TEXAS
INSTRUMENTS

CC2530 Software Examples

User’'s Guide

TEXAS
INSTRUMENTS

Table of contents

R 1 o T [1o 4T o PSSR 3
Y AN o] o] ¢~V T- L1 (o] o SRR 3
3 USING The SOTIWAIE ...ttt bbbttt b e e b e b bt et et en e e s e nbenbe b s 4
TN A o =Y =T (U] S 4
K30 € -1 1 1] 1o S = U g T SR 5
321 Set up Hardware and SOTIWAIE..........coeiiiiriiiiie e 5
3.22 Program the board WIth TARciiiie s 5
3.2.3 Alternative: Download hex files with the Flash Programmerccocooiniiiiniiinieee 6

I AN o] o] Lot L[0T T e U]] OSSR 7
4.1 Light/SWItCh @PPIICALIONoviiiiiiiiiieiee ettt bbbttt sn bt b e 7
4.2 Packet Error Rate tester appliCALION...........cooiiiiiiiiiiiieee et 9

5 SOftware LiDrary REFEIEINCE ..ottt 11
5.1 SOMWAIE ArChITECIUIE .. .uiiviiiciiiee ettt sttt s bbbt nes 11
51.1 SOFIWAIE FOIART SITUCLUIEevvviiei ettt ettt neenes 11

5.2 BASIC RF bbb bRt b bbbt nes 12
5.2.1 BasiC RF frame FOIMALoiviiiiiie e e et 12
5.2.2 BasiC RF USAQE INSLIUCTIONScvveueerieiiie ettt st n e e e nrenns 13
5.2.3 BaSiC RF API TEIRIEINCE.....c.eiiie ettt st n e nbe e nrenes 14
524 BaSIC RF OPEIALIONcviuiiiiiteiete ettt bttt sttt be e 16
5.25 Limitations OF BASIC RFc.oiiiiiiiiii ettt ettt sae s 19

5.3 Hardware ADSIFACTION LAYETc.oiiiiiiiie ettt bbb e e bbb 19
531 HAL RF APT TEFEIEINCEccveieiie ettt bttt bt e bbb 19

] (=] =TSRSS 22
DOCUMENT HISTOTY ...ttt bbbttt bbbt b bbbt bbb st bt b s bbb et s 22

TEXAS
INSTRUMENTS

1 Introduction

This document describes software examples for the CC2530 System-on-Chip solution for IEEE
802.15.4/ZigBee. It also describes the necessary hardware and software to run the examples, and
how to get started. The software examples are designed to run on the CC2530EM mounted on
SmartRFO5EB.

Section 3 of this document describes necessary prerequisites and how to get started with the code
examples. Section 4 describes how to run each of the application examples. The software library that
the code examples are built upon is described in section 5. The latter section also gives an API
reference and describes the functionality of the software library. Hex files for each of the example
applications are provided. IAR EW8051 Full version is needed for building the source code.

2 Abbreviations

API - Application Programming Interface
CBC-MAC - Cipher Block Chaining Message Authentication Code
CCM - Counter with CBC-MAC (mode of operation)
CCM* - Extension of CCM

FCS - Frame Check Sequence

HAL - Hardware Abstraction Layer

10 - Input/Output

MIC - Message Integrity Code

MPDU - MAC Protocol Data Unit

PAN - Personal Area Network

PER - Packet Error Rate

RF - Radio Frequency

RSSI - Received Signal Strength Indicator

SFD - Start of Frame Delimiter

TEXAS
INSTRUMENTS

3 Using the software

This section describes the necessary hardware and software, and how to get started with the
application examples for CC2530.

3.1 Prerequisites

To successfully download and run the software described in this document, the following material is
needed:

2 x SmartRF05 EB

2 x CC2530EM boards with appropriate antennas

IAR Embedded Workbench for 8051 versions 7.40B* (Full version)
4 AA batteries

*The software is tested with version 7.40B, but later versions might also work.

Butten 1

use Bution Butten 2

Figure 1 SmartRFO5EB with CC2530EM

3.2 Getting started

The following sections describe hardware and software setup, how to program the board and how to
run example code from the IAR debugger. A description of how to operate each software example is
found in section 4 of this guide.

3.2.1 Set up Hardware and Software
Follow these steps to configure the hardware and software needed:

Install IAR Embedded Workbench for 8051 and the patch to enable support for CC2530.
Save the CC2530 Software Examples zip file and unzip this file.

Attach the CC2530EM board to the SmartRFO5EB.

Connect the SmartRFO5EB to the PC with a USB cable.

PonE

3.2.2 Program the board with IAR

Open IAR Embedded Workbench

Open the workspace file CC2530_SW_examples.eww with IAR. This file is found in the folder

ide under the folder where the CC2530 Software Examples was unzipped. Figure 2 shows the

IAR EW with the workspace opened.

7. Each application has its own project tab in the IAR workspace viewer. Select the project to be
compiled in the workspace viewer of IAR. See section 4 for a description of each application
example.

8. Select Project->Rebuild All. This will perform a full rebuild on the selected project.

9. Select Project->Debug. IAR will now establish a connection with the CC2530 and program
the application. The debugger will be started, halting the target at main().

10. Start the application by selecting Debug -> Go.

11. The board can be reset by selecting Debug -> Reset.

12. The debugger can be stopped by selecting Debug -> Stop Debugging.

13. The unit can now be operated independently from the debugger by disconnecting the USB
cable and using the AA batteries as power source. Cycle power with the power switch on the
SmartRFO5EB.

14. Repeat the steps 9 to 12 to program additional boards.

o u

/# 1AR Embedded Workbench IDE
File Edit Wiew Project Tools ‘Window Help

Ded@ & s 2R]o o

otk pace

|pel_test - eifl5_co2h30

Files

B B ccs30_sw_examples

[light_gwitch - sHD5_cc2530
E]per_test - srf05_cc2530

Overview I_ light_zwitch l per_test i

Ready | I T
Figure 2 IAR E

TEXAS
INSTRUMENTS

3.2.3 Alternative: Download hex files with the Flash Programmer

It is also possible to program the boards with the Texas Instruments Flash Programmer as an
alternative to IAR. Follow these steps after connecting the USB cable in section 3.2.1.

5. Install the Texas Instruments Flash Programmer. Note that it is necessary to use the version
distributed together with the CC2530DK beta development kit to enable support for CC2530 in
the Flash Programmer. The version publicly available on the Tl web site does not currently
include support for CC2530.

6. Open the Texas Instruments Flash Programmer, and choose the System-on-Chip tab. The
connected device is shown in the list as in Figure 3.

7. Inthe Flash image field browse to the correct hex file.
8. Make sure the ‘Erase, program and verify’ action is checked.
9. Push the ‘Perform actions’ button to program the device.
5 Texas Instruments SmartRF® Flash Programmer EHE'E|

System-on-Chip | EE application (USE] | EB application (serisl) | EB bootloader | MSP430 |

{'T? TEXAS _ _ _
]NSTRUM ENTS EBID | Chip twpe | EB type EB firrware D | EB firrmiware rey

SmartRFOSER 0500 nno3

Flash image: |I::\S‘-;"N_WEIHK\Satxw\prniec:t3\I:ua$ic:rf_a|:||:|_eM\trunk\ide\per_te&t\&rfEIS_cj _]

Fiead IEEE] \iite |EEE]|F-1 28 (adr. OWIFFFB | IEEE 0x |

[Retain IEEE address when reprogranmming the chip

Actionsz: Flazh lock [effective after program/append):
* Erase and program ‘wite: protect: | |
(™ Erase, programn and verify
 Append and verity ['Wirite protect boot block
7 Yenify against hex-file ™ Block debug commands fincl. read access]
" Read flazh into hex-file MEB: Cannat "dppend and verify'' when setl

Ferform actions

Figure 3 Flash programmer

TEXAS
INSTRUMENTS

4 Application Examples

The following application examples are included in this software package:

“light_switch” Wireless light/switch application. One node is configured as a light controller,
and the other node as a wireless light switch.

“PER_test” Packet Error Rate test application.

Details about how to run the different application examples can be found in the following sections.
Section 3.2 describes how to program the applications on the target.

4.1 Light/Switch application

This application example requires 2 nodes programmed with the ‘light_switch’ project.

The example implements a wireless light switch application. One of the nodes is configured as a light
controller, while the other node is configured as a light switch.

The following steps must be done to use the light/switch application:

1. Reset both boards by cycling power.

2. Press Button 1 to enter the application menu

3. Choose device mode. The menu is navigated by moving the joystick right or left. Choose
device mode ‘Switch’ on one of the nodes, and ‘Light’ on the other node. Confirm the choices
by pressing Button 1.

4. The light switch application example is now ready. LED D2 on the ‘Light’ node can now be
toggled by pushing joystick down on the ‘Switch’.

The data sent out from the switch device can be observed with a Texas Instruments packet sniffer*
configured on channel 25 — 2475 Mhz.

*The Texas Instruments packet sniffer application can be downloaded from the CC2430 product
folder: http://focus.ti.com/docs/prod/folders/print/cc2430.html. The following hardware can be used for
the packet sniffer: CC2430DB, SmartRFO4EB/CC2430EM or SmartRFOSEB/CC2520EM.

It is also possible to build the Light/Switch application with the CCM security feature included. This will
enable CCM authentication and encryption on each packet. In order to use the CCM security feature
the compile option SECURITY_CCM must be set in the project file. This can be done in IAR EW by
selecting Project and Options. Navigate to the C/C++ Compiler and Preprocessor tab and set
SECURITY_CCM as one of the defined symbols (i.e. change XxSECURITY_CCM to
SECURITY_CCM). See also Figure 4. The CCM security feature is also described in section 5.2 in this
guide.

TEXAS
INSTRUMENTS

Options for node “light_switch®

Cateqony:

General Options

Assernbler

Cuskom Build

Build Actions

Linker

Debugoer
Third-Party Driver
Texas Instrumenk:
Infineon
ROM-Monitar
Analog Devices
Silabs
Sirnulator

Factory 5ettingz |

Language] Code] Dptimizatiuns] Dutput] List Prepracessar ID 1 *l

[lgnore standard include directories $TOOLKIT_DIR$MNC
$TOOLKIT_DIR$AMCACLIBY

Additional include directaries: [one per ling]

FPROJ_DIRSS. A4 A feource /Componentz/utilz s
FPROJ_DIRSES. /44 Asounce/ Componentsd common
FPROJ_DIRSS. /.2 fsource/Components/ basicr

FPROJ_DIRES /44 fsource/Componenta/targetsfinterlface bt

Preinclude file:

| g

Defined symboals: [one per ling)

chip=2530 [Preprocessor output o file
#SECURITY_CCHM I Prezerve comnment
I
ak Cancel

Figure 4 Compile option for CCM security

TEXAS
INSTRUMENTS

4.2 Packet Error Rate tester application

This application example requires 2 nodes for operation. Select the project ‘per_test™ in the IAR
workspace viewer and program both nodes.

*The PER test application is also preprogrammed on both of the CC2530EM boards found in the
CC2530DK. The CC2530DK Quick Start Guide describes how to run the preprogrammed PER test out
of the box.

The packet error rate test application sets up a one-way RF link between two nodes. One board will
operate as a transmitter and the other board will operate as a receiver. The transmitter node must be
configured with the output power to use and the number of packets to transmit as part of the PER test
(burst size). During a PER test the receiver node will display the number of received packets, the RSSI
level (signal strength) and PER.

The user configurable parameters for the test can be seen in Table 1. These parameters are set using
a menu on the LCD during initialization. The menu is navigated with the joystick (see arrows in the
display) and the settings are confirmed by pressing Button 1.

Parameter Settings
Channel 11 — 26 (2405 — 2480 MHz)
Operating Mode Receiver, Transmitter
TX Output Power -4 dBm, 0 dBm, 5 dBm
Burst Size 1K, 10K, 100K, 1M

Table 1 User configurable parameters
Configure one node as receiver and the other node as transmitter by following the steps below:

PER Test Receiver configuration:
Perform the following steps to configure the receiver node:

1. Reset the board by cycling power.

2. Press Button 1 to enter the application menu.

3. Select a channel between 11 and 26. Navigate the menu by pressing joystick left or right, and
confirm the selection by pressing Button 1. Note the channel, since it will also be used for the
Transmitter node.

4. Select operating mode ‘Receiver’ and confirm with Button 1.

5. The Receiver node is now ready for operation, displaying ‘Receiver Ready’.

PER Test Transmitter configuration
Perform the following steps to configure the transmitter node:

1. Reset the board by cycling power.

2. Press Button 1 to enter the application menu.

3. Select the same channel as for the Receiver node. Navigate the menu by pressing joystick left
or right, and confirm the selection by pressing Button 1.

4. Select operating mode ‘Transmitter’ and confirm with Button 1.

5. Select TX output power by navigating the joystick. Confirm with Button 1.

6. Select the number of packets, either 1000, 10K, 100K or 1M". Press Button 1 to confirm.

7. Push the joystick down to start a PER test. The number of packets specified by burst size will
be sent to the Receiver node. Packet Error Rate, RSSI, and number of packets received are
displayed on the Receiver’'s LCD panel.

8. The PER test can be stopped by pressing joystick down again.

! Note that the time required to complete the test is approximately 1 second per 100 packets.

TEXAS
INSTRUMENTS

Calculation of PER and RSSI
In order to obtain the statistics during the PER test, the receiver maintains the following variables. The
variable rxStats is of type perRxStats_t as defined in per_test.h.

rxStats.expectedSegqNum The expected sequence number for the next packet that should
arrive. This is equivalent to the number of received packets+lost
packets +1.

rxStats.rssiSum This is the sum of the RSSI level of the last 32 packets.

rxStats.rcvdPkts The number of correctly received packets as part of the PER test.

rxStats.lostPkts The number of packets that have been lost.

Lost packets are detected through a jump in the sequence number. If the received packet has a higher
sequence number than rxStats.expectedSeqNum the packets in between are calculated as lost. This
implies that a series of lost packets will not be detected until a subsequent packet has been received
correctly. Packets with errors are considered as lost.

The PER value per thousand packets is calculated by the formula:
PER = 1000* rxStats.lostPkts/ (rxStats. lostPkts+ rxStats. rcvdPkts)
(for rxStats. rcvdPkts>=1)

The RSSI value is fetched from the first byte following the payload in the received packet. This value is
in signed 2's complement and must be corrected with an RSSI offset to get the absolute RSSI value
(in dBm). This offset is specified in the CC2530 datasheet. The converted RSSI values of the last 32
(defined by RSSI_AVG_WINDOW _SIZE in per_test.h) received packets are stored in a ring buffer,
implementing a moving average filter.

The average RSSI of the 32 last received packets is presented on the LCD of the receiver node during
a PER test.

10

TEXAS
INSTRUMENTS

5 Software Library Reference

This section describes the software libraries the application examples are built upon.

5.1 Software architecture

The design of the software in this package is based on the layered architecture as depicted in Figure 5
below.

Application

Basic RF

Hardware Abstraction Layer

T e

Figure 5 SW architecture

The software implementation consists of the following modules:

e Application layer. This software package contains several applications examples with access
to Basic RF and HAL.

e Basic RF. This layer offers a simple protocol for transmission and reception using a two-way
RF link.

e Hardware Abstraction Layer. Contains functionality for access to the radio and onboard
peripherals modules like LCD, UART, joystick, buttons, timers etc.

A detailed description of the Basic RF protocol is found in section 5.2. The Hardware Abstraction
Layer is described in section 5.3.

5.1.1 Software folder structure

The software and documentation in this package is organized in the folder structure shown in Figure 6.
The documentation is found in the docs folder. The workspace file is found in the ide folder. Source
code for the different applications can be found in the folder source/Apps. The Components folder
includes source code for the different components used by the applications. The HAL and Basic RF
source code components are found under the Components folder.

11

TEXAS
INSTRUMENTS

cc2530_software_examples

docs

—| light_switch |
—| per_test |

Figure 6 Software folder structure

5.2 Basic RF

The Basic RF layer offers a simple protocol for transmission and reception using a two-way RF link.
The Basic RF protocol offers service for packet transmission and reception. It also offers secure
communication by use of CCM-64 authentication and encryption/decryption of packets. The security
features of Basic RF can be compiled in by defining the compile switch SECURITY_CCM in the
project file. The compile time inclusion of security features is done to save code space for the
applications where security features are not needed.

The protocol uses IEEE 802.15.4 MAC compliant data and acknowledgment packets. However it does
not offer a full MAC layer, only a simple data link layer for communication between two nodes. See
also section 5.2.5 for limitations of Basic RF.

Basic RF contains only a small subset of the 802.15.4 standard:

e Association, scanning or beacons are not implemented
¢ No defined coordinator/device roles (peer-to-peer, all nodes are equal)
e No packet retransmission. This must be taken care of by the layer above Basic RF.

5.2.1 Basic RF frame format

OcaetS: 2 1 2 2 2 5 Variable | 2
Length Frame Sequence Dest. Dest. Source Aux.Sec. Frame FCS
Byte Control number PAN ID Address Address Header payload

Figure 7 Basic RF frame format

12

TEXAS
INSTRUMENTS

The frame format of the Basic RF protocol is shown in Figure 7. The first byte is a length byte. The
length byte itself is not counted in the length. The frame control field is set according to the IEEE Std.
802.15.4-2006. Please refer to section 7.2 in the IEEE Std. 802.15.4-2006 [1].

The sequence number is an 8 bit value starting on 0 for the first packet transmitted after initialization.
The values of the destination PAN ID, destination address and source address fields are configured by
the application as part of the basic RF initialization. Please refer to the Basic RF API reference section
5.2.3 for further information.

The auxiliary security header is only included in the frames when the security features of Basic RF is
used i.e when the compile option SECURITY_CCM is set in the project file. This field is 5 bytes long
and consists of a security control byte that defines the level of protection applied to this frame, and
frame counter. The Basic RF protocol supports only one security mode: ENC-MIC-64 i.e. encryption
and authentication with 64 bits Message Integrity Code. For this mode the Security Control field is set
to 0x06 according to IEEE Std. 802.15.4-2006 [1]. The frame counter field of the auxiliary security
header is 4 bytes long and is used for replay protection of the frame. The value of the frame counter
field is set to 0 on initialization and incremented for each transmitted packet.

The frame payload is variable in length and consists of data sent from the layer above Basic RF. The
maximum length of this field is 103 Bytes.

The Frame Check Sequence field (FCS) is 2 bytes long. This field is automatically appended by the
radio chip, and is not taken care of by the Basic RF layer. When a frame is received the first byte of
FCS is replaced with the RSSI value in the RX FIFO on the radio.

5.2.2 Basic RF usage instructions

Startup
1. Make sure that the board peripherals and radio interface is initialized i.e. halBoardInit() must
have been called first.
2. Create a basicRfCfg_t structure, and initialize its members. If the security features of Basic RF
are used, the higher layer is responsible for allocating and assigning the 16 bytes key.
3. Call basicRflnit() to initialize the packet protocol.

Transmission:
1. Create a buffer with the payload to send. Maximum payload size for Basic RF is 103 Bytes.
2. Call basicRfSendPacket(). Check the return value.

Reception:
1. Perform polling by calling basicRfPacketisReady() to check if a new packet is ready to be
received by the higher layer.
2. Call basicRfReceive() to receive the packet by higher layer. The caller is responsible for
allocating a buffer large enough for the packet and 2 Bytes buffer space for the RSSI value.

By calling basicRfReceiveOn() the radio receiver is kept on all the time. This is done for nodes that
need to be able to receive packets at any time. The drawback is a higher current consumption.

By calling basicRfReceiveOff() the radio receiver is turned off.

13

TEXAS
INSTRUMENTS

5.2.3 Basic RF API reference

Include files

basic_rf.h

Compile time configuration

In order to use the security features of basic RF the following compile option must be set in the project
files:
SECURITY_CCM

Defining this compile switch enables the security features of Basic RF. All outgoing packets will be
authenticated and encrypted with ENC-MIC-64 CCM*. Likewise it will be assumed that all incoming
packets are authenticated and encrypted the same way.

When this compile flag is set the higher layer is responsible for allocation of a 16 bytes key for security
operations.

Data structures
The following data structure is used for Basic RF configuration:

typedef struct {
uintl6 myAddr;
uintl6 panid;
uint8 channel;
uint8 ackRequest;
#ifdef SECURITY_CCM
uint8* securityKey;
uint8* securityNonce;
#endif

} basicRfCfg_t;

uintl6 myAddr — 16-bit short address (This node’s address)

uintl6 panld — PAN ID (ID of the Personal Area Network this node is operating on)

uint8 channel — RF Channel (must be set between 11 and 26)

uint8 ackRequest — Set true to request acknowledgement from destination

uint8* securityKey — Pointer to the security key buffer allocated by the caller

uint8* securityNonce — Pointer to the security nonce buffer. This is not used by the caller.

The securityKey and securityNonce members of the structured are only compiled in if the compile
switch SECURITY_CCM is enabled.

Functions

void basicRflnit(basicRfCfg_t* pRfConfig)
Initialise basic RF datastructures. Sets channel, short address and PAN ID in the chip and
configures interrupt on packet reception. The board peripherals and radio interface must be
called before this function with the function halBoardinit().

uint8 basicRfSendPacket(uint16 destAddr, uint8* pPayload, uint8 length)
Send packet to the given destination short address. Returns TRUE if packet was sent

successfully, and FAILED otherwise. If ackRequest is TRUE the return value of this function
will only be TRUE if an acknowledgment is received from the destination.

14

TEXAS
INSTRUMENTS

uint8 basicRfPacketlsReady(void)
Returns TRUE if a received packet is ready to be retrieved by higher layer.
int8 basicRfGetRssi(void)

Returns the RSSI value of the last received packet

uint8 basicRfReceive(uint8* pRxData, uint8 len, int16* pRssi)
Retrieve packet from basic RF layer. The caller is responsible for allocating buffer space for
data and the RSSI value.

void basicRfReceiveOn(void)

Turn on receiver on radio. After calling this function the radio is kept on until
basicRfReceiveOff is called.

void basicRfReceiveOff(void)

Turn off receiver on radio, and keep it off unless for transmitting a packet with Clear Channel
Assessment.

15

TEXAS
INSTRUMENTS

5.2.4 Basic RF operation

This section will describe how the Basic RF and the HAL operate during initialization, packet
transmission and reception. This section assumes that the radio transceiver is a CC2530.

Initialization
Application Basic RF HAL
| halBoardInit() | |
alBoardIni

| i >
_ | |

Set Basic RF
configuration | |
|

basichInit(&basichConfig“

halRfInit()

halRfSetChannel(pConfig-> >I
channel)

|

I

halRfSetShortAddr(pConfig->

| myAddr) |
|

|

[

|

halRfSetPanld(pConfig-> >|
panld) >|
halRfInterruptConfig(basicRfRx

FrmDonelsr) >|
|

Figure 8 Initialization

Figure 8 illustrates the sequence of calls during initialization of Basic RF and the HAL. The application
is responsible for calling halBoardInit() to initialize the hardware peripherals and configure 10 ports.

The application must then initialize an instance of the basicRfCfg_t struct (see section 5.2.3).The
application will then call basicRflnit() with the address to the instance of this struct as parameter. The
basicRfInit() function calls the function halRFInit() which configures the radio with recommended
register settings and enabled the receive interrupt. In addition the basicRflnit() function sets up the
channel, short address and PAN ID to the CC2530, and register the interrupt service routine to handle
the received packet interrupt from the radio.

16

TEXAS
INSTRUMENTS

Packet transmission

Figure 9 illustrates the sequence of function calls for a packet transmission scenario with Basic RF. In
this scenario the security features of Basic RF are disabled.

Application Basic RF HAL RF

basicRfSendPacket(destAddr, |
pPayload, length) >|

halRfWaitTransceiverReady()

basicRfBuildMpdu(destAddr,
pPaonad length)

halRfWriteTxBuf(txMpdu,
mpduLength)

|
|
!
"]
|
|
|
|
-

>

halRfTransmit()

ISTXON() strobe

I

Wait for TX done
(IRQ_TXDONE)

Status |
2N

[
|
Wait for ACK |
|
|

Figure 9 Packet transmission

With reference to Figure 9 these are the steps that are performed during a Basic RF packet
transmission with acknowledgement request.

1.

S

The application prepares the payload to be sent and calls the function basicRfSend() with the
16 bit destination address, a reference to the payload buffer and the length of the payload
buffer as arguments.

Basic RF waits for the radio to be idle by calling halRfWaitTransceiverReady(). This function
checks that the SFD is not active.

Basic RF calls the function basicRfBuildMpdu(). Basic RF keeps an internal buffer for the
outgoing MPDU. It will first build the header with the correct address and header information,
and then it will copy the payload from the application over to the remaining part of the internal
buffer.

Basic RF will then call halRfWriteTxBuf() to write the MPDU to the CC2530 TX FIFO buffer.
The function halRfTransmit() is called to transmit a packet with on the air. This function will
issue the command strobe ISTXON() to send the packet in the TX FIFO.

The function halRfTransmit() will wait until the packet transmission is finished (IRQ_TXDONE
flag is set).

17

TEXAS
INSTRUMENTS

7. Basic RF will then wait for receiving the acknowledgement packet in the function
basicRfSend().

8. If the ACK is successfully received within a predefined waiting time, basicRfSend() returns
with status SUCCESS to the application.

Packet reception
The sequence of function calls for a packet reception scenario with security features disabled is
illustrated with Figure 10.

Application Basic RF HAL RF

|/ basicRfRxFrmDonelsr()

| halRfReadRxBuf(length, 1)
|

|
|
|
|
halRfRecvFrame(rxMpdu,
| |
| | length)
|
|
|
|
|

Check Sequence
number and FCS

rxi.isReady = TRUE;
|

|

Loop | |
[rxi.isRejdy =FALSE] |
| basicRfPacketlsReady() >I

| rxi.isReady |
T |

| hasicRfReceive(pRxData, |

len, pRssi) >

| |

o leneth |

S SN AN B

Figure 10 Packet reception

With reference to Figure 10 these are the steps that are performed during a packet reception with
acknowledgement request.

1. When a new packet is completely received the RX packet done (RXPKTDONE) interrupt is
issued and the rflsr interrupt service routine function in the HAL_RF module is called. This
leads to the basicRfRxFrmDonelsr() interrupt service routine being invoked. See Figure 10.

2. The length of the received frame is read out from the first byte in the RX buffer on CC2530.
This is done with the call halRfReadRxBuf(length, 1) in Figure 10.

3. The complete packet is read out from the RX buffer with the call halRfRecvFrame(rxMpdu,
length). The incoming packet is stored in the internal data buffer rxMpdu.

18

TEXAS
INSTRUMENTS

4. The CC2530 automatically sends the ACK when AUTOACK is enabled and the incoming
frame is accepted by the address recognition with the acknowledgement flag set and the
CRC is correct. See the CC2530 datasheet for how AUTOACK is enabled [2].

5. The FCS field and the sequence number of the packet are checked. If they are as expected

the rxi.isReady flag is set TRUE to indicate that a new packet is received.

The application will poll this flag in a loop by calling the function basicRfPacketisReady().

When basicRfPacketlsReady() return TRUE the application calls the function

basicRfReceive() to retrieve the payload and RSSI from the new incoming packet.

8. The function basicRfReceive() copies the payload over to the memory location pRxData in
the argument list. The number of bytes actually copied is returned. The RSSI value in dBm is
also copied over to the memory location pRssi in the argument list.

No

5.2.5 Limitations of Basic RF

Basic RF is only meant to serve as a simple example of how to use the chip. It is not a complete
protocol layer ready to be used in a commercial product.

e Basic RF is not a complete data link or MAC layer protocol.
e Basic RF does not have full error handling support. As an example RX FIFO overflow handling
is not implemented, and such an error will cause the software to stall.

It is recommended to use either TIMAC or SimplicTl instead of Basic RF for commercial
product development.

SimpliciTl is a simple protocol aimed at small RF networks.

TIMAC is an IEEE 802.15.4 compliant MAC layer software implementation aimed for standardized
solutions.

More info is found on the following web pages:
www.ti.com/simpliciti
www.ti.com/timac

5.3 Hardware Abstraction Layer

5.3.1 HAL RF API reference

Include files

hal_rf.h
hal_rf_security.h

Functions
uint8 halRfInit(void)

Powers up the radio, configures the radio with recommended register settings, enables
autoack and configures the 10 on the radio. This function must be called after halBoardInit().

19

TEXAS
INSTRUMENTS

uint8 halRfSetPower(uint8 power)

Set TX output power

uint8 halRfTransmit(void)

Transmit frame

void halRfSetGain(uint8 gainMode)

Set gain mode. This is only used if external LNA/PA is used.

uint8 halRfGetChipld(void)

return radio chip id register

uint8 halRfGetChipVer(void)

Return radio chip version register

uint8 halRfGetRandomByte(void)

Return random byte.

uint8 halRfGetRssiOffset(void)

Return RSSI offset for radio.

void halRfWriteTxBuf(uint8* data, uint8 length)

Write the number of bytes given by length from the memory location pointed to by the pointer
data to the radio TX buffer.

void halRfReadRxBuf(uint8* data, uint8 length)
Read the number of bytes given by length from radio RX buffer to the memory location pointed

to by the pointer data. The radio status byte is returned.

void halRfWaitTransceiverReady(void)

Wait until the transceiver is ready

void halRfReceiveOn(void)

Turn on receiver on radio.

20

TEXAS
INSTRUMENTS

void halRfReceiveOff(void)
Turn off receiver on radio.
void halRfDisableRxInterrupt(void)

Clear and disable RX interrupt.

void halRfEnableRxInterrupt(void)

Enable RX interrupt.

void halRfRxInterruptConfig(ISR_FUNC_PTR pf)

Configure RX interrupt, and setting the function to be called on interrupt.

void halRfSetChannel(uint8 channel)

Set RF channel. Channel must be in the range 11-26.

void halRfSetShortAddr(uint16 shortAddr)

Write 16 bit short address to the radio.

void halRfSetPanld(uint16 Panld)

Write 16 bit PAN ID to the radio.

Security Interface

void halRfSecuritylnit(uint8* key, uint8* nonceRXx, uint8* nonceTx)
Write 16 bit nonces and key to to the radio from the memory locations pointed to by key,
nonceRx and nonceTxX.

uint8 halRfReadRxBufSecure(uint8* pData, uint8 length, uint8 encrLength, uint8 authLength, uint8 m)

Read out RX buffer from radio with CCM authentication and decryption

void halRfWriteTxBufSecure(uint8* pData, uint8 length, uint8 encrLength, uint8 authLength, uint8 m)

Write to TX buffer in radio with CCM authentication and encryption.
void halRfIncNonceTx(void)

Increment the frame counter field of the nonce used for outgoing packets. Refer to IEEE Std.
802.15.4-2006 [1] for a description of this field.

21

TEXAS
INSTRUMENTS
References

[1] IEEE Std. 802.15.4-2006, Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANS)

[2] CC2530 datasheet

Document History

Revision Date Description/Changes
1.0 2008.07.01 Modified after review comments
- 2008.06.27 preliminary version

22

