

Component, Model and
Library Concepts

Summary
Article
AR0104 (v1.1) July 28, 2004

This article defines components, models and libraries, and
their relationships. The search sequence for locating models
is explained, as well as options that make this search more
restrictive for specific models.

Components are the basic building blocks of an electronic product. During the design capture and
implementation processes each component needs to be represented in different ways: as a logical
symbol on the schematic, as a footprint/pattern on the PCB, as a SPICE definition for simulation, as a
suitable signal integrity description for signal integrity analysis, or as a three-dimensional description for
a 3D representation of the finished PCB.

Not all of these representations are necessary for every component, but the logical symbol is the
starting point. Every component must be defined, at the very least, with its own name in a schematic
library. It may contain pins and graphic symbols in single or multi-part fashion, and even have
alternative display options. As such, it may be placed in any schematic design. However, until models
have been added to the component, it cannot be implemented in any practical sense.

Definitions
Component: an object which can be placed into a design.

Symbol: graphical representation of the component, that is placed on the schematic. The symbol can
include drawing objects that define the shape, and pins that define the electrical connection points.
Part: certain components, such as a resistor network or a relay, can be drawn as a series of separate
parts, which can be placed independently on the schematic (referred to as a multi-part component).
Model: a representation of the component which is useful in some practical domain.

Footprint/pattern: names used for the model that represents the component on the PCB layout. A
footprint/pattern is a grouped set of PCB pads and component overlay shapes that define the space
required to mount and connect the physical component on the board layout.
Domain: type, group, or area of representation. In the DXP 2004 environment the valid domains
include PCB layout, SPICE simulation, Signal Integrity analysis, and 3D.
Library: a file containing a collection of components, or a collection of models, or both.

Model Library: a file containing a collection of component models.

Component Library: a file containing a collection of schematic components.

Integrated Library: a file containing a collection of schematic components, and their associated
models.

AR0104 (v1.1) July 28, 2004 1

Component, Model and Library Concepts

Fundamentals Fundamentals
At the schematic stage, the design is a collection of components which have been connected logically.
To test or implement the design it needs to be transferred to another modeling domain, such as
simulation, PCB layout, signal integrity analysis, and so on.

Each domain needs some information about the component, and also some way to map that
information to the pins of the schematic symbol. Some of this domain information resides in model files,
the format of which is typically pre-defined. Examples of these include IBIS, MDL and CKT. Some of
the information does not reside in the model files, for example the SPICE pin-mapping and netlisting
data must be stored and managed by the system.

Figure 1. Information on how to model the component in each domain is stored in the model files.

Note that IBIS signal integrity models and VRML or IGES 3D models must be imported into DXP
2004 format models before they can be used. IBIS models are imported directly in the Signal
Integrity Model dialog, which opens when you add an SI model to a component. VRML and IGES
models must be imported into a Pcb3DLib before they can be added to a schematic component.

2 AR0104 (v1.1) July 28, 2004

Component, Model and Library Concepts

All of the necessary domain information is contained within the schematic component, which stores a
separate interface to each model that has been added to it. In effect, the complete model is the
combination of the model mapping information stored in the component, and the domain modeling
information stored in the model library.

Figure 2. Linkage to each model and any mapping it
requires is defined in the respective Model dialogs.

Components may have models for multiple domains, and can also have multiple models per domain,
one of which will be the set as the current model.

Library Types
There are three types of libraries that can be used in the DXP 2004 environment.
Model libraries – the models for each domain are stored in “model containers”, typically called model
libraries. In some domains, such as SPICE, where the storage is typically one model per file, they are
also referred to as model files (*.MDL, *.CKT). In other domains, the models are normally grouped into
library files according to a user-defined categorization, such as PCB footprint/patterns grouped into
package-type libraries (*.PcbLib, *.PcadLib).
Schematic libraries – these contain schematic components and their model interface definitions
(*.SchLib). Each model interface definition contains a link to its respective model library.
Integrated libraries – these are a set of schematic libraries, which, together with their linked model
libraries, are 'compiled' into one file – the integrated library (*.IntLib). The advantage of compiling into
an integrated library is that all component information is available in a single portable file. Integrated
libraries cannot be edited without extracting the sources, and recompiling.

AR0104 (v1.1) July 28, 2004 3

Component, Model and Library Concepts

Referencing a Model
Whenever you add a model to a component you have the option of defining how tightly you want to
control where the model is searched for. Although they vary slightly from one model type to another,
the model editor dialogs generally include these options:

Any – searches all valid libraries
for a matching model.

Library name – only searches
valid libraries of this name for a
matching model.

Library path – only searches a
valid library of this name in this
location for a matching model.

Integrated library – draws the
model directly from the integrated
library used to place this
component. The integrated library
must be available in a valid
location.

4 AR0104 (v1.1) July 28, 2004

Component, Model and Library Concepts

Locating the Model – Valid Search Locations
Each time you perform an operation that requires a model, the system will search for it in the valid
locations, according to the reference criteria defined in the previous section. For example, when you
perform a circuit simulation, the SPICE model linked to each component is retrieved and used by the
XSPICE simulation engine. Another example would be transferring the design from schematic capture
to PCB layout. During this process, the footprint/pattern for each component must be retrieved and
placed on the PCB.

The valid locations of models that can be searched include:
Project Model/Library – models and model libraries can be added into the project. Like all project
files, model/library files are only linked to the project, so you can link a model/library to many projects.
The advantage of this approach is that whenever the project is opened the models will be available.
The disadvantage is that models/libraries that are not stored in the project folder structure can be
forgotten if the project files are moved from one PC to another. Project models/libraries are only
available when you are editing a document that belongs to the current project.
Installed Library – these libraries are associated with the DXP 2004 environment. Components in
installed libraries are available to all open projects.
Project Search Path – models/libraries can be made available to a project by defining a search path in
the Options for Project dialog. Each search path defines a folder, and can include sub-folders if the
Recursive option is enabled. All model and library files found down the search path will be valid. Note
that retrieving models using search paths can be slow if there is a large number of files in the search
path folder(s).

Checking the Available Models/Libraries
You can review the models/libraries available to the current project in the Available Libraries dialog.
Click the Libraries button in the Libraries panel, or select Design » Add/Remove Library to open the
dialog.

Figure 3. The Available Libraries dialog shows all models/libraries that are available to the active project.

AR0104 (v1.1) July 28, 2004 5

Component, Model and Library Concepts

General Search Order
The rule is to stop searching for a model as soon as a match is found. For all models not tied to an
integrated library, the search will proceed in this order:

6 AR0104 (v1.1) July 28, 2004

•

•

•

Project Libraries

Installed libraries

Search Paths

You will notice that this order is followed from left to right through the Available Libraries dialog. In fact,
since the available libraries can be ordered within this dialog from top to bottom, the entire search
sequence is intuitive and easy to set up.

While the DXP 2004 environment offers flexibility and control over your model locations, it does require
you to use the correct file extension for each model type. For example, a footprint cannot be found
unless it is in a file with a *.lib or *.pcblib extension. Similarly, a SPICE .SUBCKT will not be
found unless it is in a *.ckt file, nor will a SPICE .MODEL if it is not in a *.mdl file. Whenever a
model search does not yield a match, an error will appear in the Messages panel.

Integrated Libraries
Integrated libraries are a special class of library, where the schematic symbol library and all referenced
models are compiled into a single file. The advantage of an integrated library is portability and security.
Since all models are packaged into the integrated library only one file needs to be available to the
project, or moved when the project is relocated. Components and models in an integrated library are
not available for editing, unless the library is decompiled (open the IntLib to extract the sources).

An Integrated library is built by:

•

•

•

•
•

Creating an integrated library package

Adding schematic symbol libraries

Referencing the required models from each component symbol

Setting the integrated library project options, including the location of the compiled output
Compiling the integrated library to produce the integrated library (Name.IntLib)

If a component symbol is placed from an integrated library then the system will only attempt to retrieve
the referenced models from that integrated library. Note that the integrated library must be available in
the valid search locations when the system is attempting to retrieve a model.

For more information on integrated libraries refer to the article Enhanced Library Management
Using Integrated Libraries.

For step by step instructions on creating a component library, creating component symbols, and
referencing models, refer to the tutorial Creating Library Components.

For instructions on creating an integrated library, refer to the tutorial Building an Integrated Library.

Component, Model and Library Concepts

Properties of the Component
The basis of a component is the symbol. Rather than requiring each component symbol represent a
unique component, the system supports different approaches to building components.

Common graphic, different component
One component symbol for each physical component – ideal for components such as integrated
circuits, where each component symbol represents an actual physical component. The component
would include suitable models, such as the PCB footprint/pattern, the signal integrity model and the 3D
model.

One symbol for graphically equivalent components – useful when components are logically equivalent,
but have a different component specification. An example would be a logic gate that is available in a
variety of logic families, for example a 74ACT32 and a 74HC32. In this case the component symbol is
drawn once, and a component alias is defined for each equivalent component required. Component
aliases are added in the Schematic Library editor panel. Component aliases can be thought of as one
component, with multiple names.

One symbol for a type of component – useful for discrete components, such as resistors. The
component could link to multiple PCB footprints/patterns. The component value is defined when the
component is placed on the schematic, rather than in the library.

Common component, different graphics
The system also supports multiple graphics for the same component. For example, you may have one
client that requires their component symbols drawn using component traditional drawing shapes and
an other that requires the component symbols to be drawn in accordance with a specific standard. To
define additional graphical representations for the one component, add a new component Mode, either
in the library editor Tools menu, or using the Mode toolbar.

Figure 4. Use the Mode feature to define multiple graphical representations of the one component.

Non-standard component types

AR0104 (v1.1) July 28, 2004 7

Figure 5. Set the component type for
special component requirements.

Not all components are destined to be mounted on the
assembled PCB, not all components are required in the bill of
materials, and not all items that are mounted on the PCB need
to be represented on the schematic. The system supports this
through the Component Type property, set in the Component
Properties dialog (in the library or on the schematic).

For example, the presentation and readability of your schematic
might be enhanced by including a chassis mounted component
that is wired to the PCB. If this component was not required in
the PCB BOM, then the component type can be set to
Graphical. A graphical component is not included during

Component, Model and Library Concepts

schematic electrical verification, it is not included in the BOM, nor is it checked during schematic to
PCB synchronization. In this case the Component Type is set to Graphical.
schematic electrical verification, it is not included in the BOM, nor is it checked during schematic to
PCB synchronization. In this case the Component Type is set to Graphical.
Another special class of component would be a test point – this component is required on both the
schematic and the PCB, it should be checked during design synchronization, but is not required in the
BOM. In this case the Component Type is set to Standard (no BOM).

Another special class of component would be a test point – this component is required on both the
schematic and the PCB, it should be checked during design synchronization, but is not required in the
BOM. In this case the Component Type is set to Standard (no BOM).
Another example of a special component kind would be a heatsink – typically it is not shown on the
schematic (but could be), is not required to be checked during schematic electrical verification, but
must be included in the BOM. In this case the component type is set to Mechanical.

Another example of a special component kind would be a heatsink – typically it is not shown on the
schematic (but could be), is not required to be checked during schematic electrical verification, but
must be included in the BOM. In this case the component type is set to Mechanical.

Use the What’s This help Use the What’s This help for details on the various component types, or press F1 when the
Component Properties dialog is open.

Component parameters
Typically there is a variety of text
information that must be included with
a component. This could include such
things as component electrical
specifications (eg wattage or
tolerance), component purchasing or
stock details, designer notes, or
references to component datasheets. This information is included by adding parameters to the
component, either during component creation in the library editor, or once the component has been
placed on the schematic.

Figure 6. Add component parameters to include required component detail.

For more information on linking from components to a company database, refer to the tutorial
Linking from a Company Database to Components in Your Design.

Figure 7. A component can have
one or more component parts.

To reference a document such as a datasheet from a component,
include the parameter HelpURL. The parameter value points to the
document, and can include a page number for a PDF. For example, the
HelpURL value of CR0118 FPGA Generic Library Guide.pdf#page=93
would result in the referenced PDF file being opened at page 93, when
the F1 button is pressed when the cursor is over the component. The
reference can be to a local document (include the path if the path is not
defined by the operating system), or the reference can be to an internet
URL. If the component does not include a HelpURL parameter the
default component help topic will appear.

Multi-part components
In some instances it is more appropriate to represent the one physical
component using multiple symbols, for example each resistor in a resistor
network, or the coil and contacts of a relay.

Additional parts are added or removed using the commands in the library
editor Tools menu. Each part is drawn individually, and pins are added.

8 AR0104 (v1.1) July 28, 2004

Component, Model and Library Concepts

AR0104 (v1.1) July 28, 2004 9

Power pins

Figure 8. For hidden power pins the Connect To
property defines the net that this pin must connect to.

Component power pins can be shown visibly, like
any other component pin, or they can be hidden.
Hidden pins, that have their electrical type set to
Power, are automatically connected to the net
defined by the Connect To property in the Pin
Properties dialog.

To display hidden power pins during component
design, enable the Show Hidden Pins option in the
library editor View menu.

Revision History

Date Version No. Revision

9-Dec-2003 1.0 New product release

28-Jul-04 1.1 Added images and extra detail to text

Software, documentation and related materials:

Copyright © 2004 Altium Limited.

All rights reserved. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, CAMtastic, CircuitStudio, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, Nexar,
nVisage, P-CAD, Protel, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or
registered trademarks of Altium Limited. All other registered or unregistered trademarks referenced herein are the
property of their respective owners, and no trademark rights to the same are claimed.

	Component, Model and Library Concepts
	Definitions
	Fundamentals
	Library Types
	Referencing a Model
	Locating the Model – Valid Search Locations
	Checking the Available Models/Libraries
	General Search Order

	Integrated Libraries
	Properties of the Component
	Common graphic, different component
	Common component, different graphics
	Non-standard component types
	Component parameters
	Multi-part components
	Power pins

	Revision History

