Pulse-Width Modulation (PWM) Techniques

Lecture 25

Instructor: Prof. Ali Keyhani

Contact Person:
E-mail: keyhani.1@osu.edu
Tel.: 614-292-4430

Department of Electrical and Computer Engineering The Ohio State University

ORGANIZATION

I. Voltage Source Inverter (VSI)
A. Six-Step VSI
B. Pulse-Width Modulated VSI

II. PWM Methods

A. Sine PWM
B. Hysteresis (Bang-bang)
C. Space Vector PWM
III. References

I. Voltage Source Inverter (VSI) A. Six-Step VSI (1)

>Six-Step three-phase Voltage Source Inverter

Fig. 1 Three-phase voltage source inverter.

I. Voltage Source Inverter (VSI)
 A. Six-Step VSI (2)

Gating signals, switching sequence and line to negative voltages

Fig. 2 Waveforms of gating signals, switching sequence, line to negative voltages for six-step voltage source inverter.

I. Voltage Source Inverter (VSI)
 A. Six-Step VSI (3)

$>$ Switching Sequence: $561\left(\mathrm{~V}_{1}\right) \rightarrow \mathbf{6 1 2}\left(\mathrm{V}_{2}\right) \rightarrow \mathbf{1 2 3}\left(\mathrm{V}_{3}\right) \rightarrow \mathbf{2 3 4}\left(\mathrm{V}_{4}\right) \rightarrow \mathbf{3 4 5}\left(\mathrm{V}_{5}\right) \rightarrow \mathbf{4 5 6}\left(\mathrm{V}_{6}\right) \rightarrow 561\left(\mathrm{~V}_{1}\right)$ where, 561 means that S_{5}, S_{6} and S_{1} are switched on

Fig. 3 Six inverter voltage vectors for six-step voltage source inverter.

I. Voltage Source Inverter (VSI)
 A. Six-Step VSI (4)

$>$ Line to line voltages $\left(\mathrm{V}_{\mathrm{ab}}, \mathrm{V}_{\mathrm{bc}}, \mathrm{V}_{\mathrm{ca}}\right)$ and line to neutral voltages $\left(\mathrm{V}_{\mathrm{an}}, \mathrm{V}_{\mathrm{bn}}, \mathrm{V}_{\mathrm{cn}}\right)$

- Line to line voltages
$\Rightarrow \mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{aN}}-\mathrm{V}_{\mathrm{bN}}$
$\Rightarrow \mathrm{V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{bN}}-\mathrm{V}_{\mathrm{cN}}$
$\Rightarrow \mathrm{V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{cN}}-\mathrm{V}_{\mathrm{aN}}$
- Phase voltages
$\Rightarrow \mathrm{V}_{\mathrm{an}}=2 / 3 \mathrm{~V}_{\mathrm{aN}}-1 / 3 \mathrm{~V}_{\mathrm{bN}}-1 / 3 \mathrm{~V}_{\mathrm{cN}}$
$\Rightarrow \mathrm{V}_{\mathrm{bn}}=-1 / 3 \mathrm{~V}_{\mathrm{aN}}+2 / 3 \mathrm{~V}_{\mathrm{bN}}-1 / 3 \mathrm{~V}_{\mathrm{cN}}$
$\Rightarrow \mathrm{V}_{\mathrm{cn}}=-1 / 3 \mathrm{~V}_{\mathrm{aN}}-1 / 3 \mathrm{~V}_{\mathrm{bN}}+2 / 3 \mathrm{~V}_{\mathrm{cN}}$

Fig. 4 Waveforms of line to neutral (phase) voltages and line to line voltages for six-step voltage source inverter.

I. Voltage Source Inverter (VSI)
 A. Six-Step VSI (5)

$>$ Amplitude of line to line voltages ($\mathrm{V}_{\mathrm{ab}}, \mathrm{V}_{\mathrm{bc}}, \mathrm{V}_{\mathrm{ca}}$)

- Fundamental Frequency Component $\left(\mathrm{V}_{\mathrm{ab}}\right)_{1}$

$$
\left(\mathbf{V}_{\mathbf{a b}}\right)_{\mathbf{1}}(\mathbf{r m s})=\frac{\sqrt{3}}{\sqrt{2}} \frac{4}{\pi} \frac{\mathrm{~V}_{\mathrm{dc}}}{2}=\frac{\sqrt{6}}{\pi} \mathrm{~V}_{\mathrm{dc}} \approx 0.78 \mathrm{~V}_{\mathrm{dc}}
$$

- Harmonic Frequency Components $\left(\mathrm{V}_{\mathrm{ab}}\right)_{\mathrm{h}}$
: amplitudes of harmonics decrease inversely proportional to their harmonic order

$$
\left(\mathbf{V}_{\mathrm{ab}}\right)_{\mathbf{h}}(\mathbf{r m s})=\frac{0.78}{h} \mathrm{~V}_{\mathrm{dc}}
$$

where, $\quad h=6 \mathrm{n} \pm 1 \quad(\mathrm{n}=1,2,3, \ldots .$.

I. Voltage Source Inverter (VSI)
 A. Six-Step VSI (6)

$>$ Characteristics of Six-step VSI

- It is called "six-step inverter" because of the presence of six "steps" in the line to neutral (phase) voltage waveform
- Harmonics of order three and multiples of three are absent from both the line to line and the line to neutral voltages and consequently absent from the currents
- Output amplitude in a three-phase inverter can be controlled by only change of DC-link voltage (V_{dc})

I. Voltage Source Inverter (VSI) B. Pulse-Width Modulated VSI (1)

> Objective of PWM

- Control of inverter output voltage
- Reduction of harmonics
$>$ Disadvantages of PWM
- Increase of switching losses due to high PWM frequency
- Reduction of available voltage
- EMI problems due to high-order harmonics

I. Voltage Source Inverter (VSI)
 B. Pulse-Width Modulated VSI (2)

> Pulse-Width Modulation (PWM)

Fig. 5 Pulse-width modulation.

I. Voltage Source Inverter (VSI)
 B. Pulse-Width Modulated VSI (3)

> Inverter output voltage

- When $\mathbf{v}_{\text {control }}>\mathrm{v}_{\text {tri }} \mathrm{V}_{\mathrm{A} 0}=\mathrm{V}_{\mathrm{dc}} / \mathbf{2}$
- When $\mathrm{v}_{\text {control }}<\mathrm{v}_{\text {tri }}, \mathrm{V}_{\mathrm{A} 0}=-\mathrm{V}_{\mathrm{dc}} / \mathbf{2}$
> Control of inverter output voltage
- PWM frequency is the same as the frequency of $\mathrm{v}_{\text {tri }}$
- Amplitude is controlled by the peak value of $\mathbf{v}_{\text {control }}$
- Fundamental frequency is controlled by the frequency of $\mathbf{v}_{\text {control }}$
$>$ Modulation Index (m)
$\therefore m=\frac{v_{\text {control }}}{v_{\text {tri }}}=\frac{\text { peak of }\left(V_{A 0}\right)_{1}}{V_{d c} / 2}$,
where, $\left(\mathrm{V}_{\mathrm{A} 0}\right)_{1}$: fundamental frequecny component of $\mathrm{V}_{\mathrm{A} 0}$

II. PWM METHODS
 A. Sine PWM (1)

> Three-phase inverter

Fig. 6 Three-phase Sine PWM inverter.

II. PWM METHODS A. Sine PWM (2)

> Three-phase sine PWM waveforms

- Frequency of $v_{\text {tri }}$ and $v_{\text {control }}$
\Rightarrow Frequency of $\mathrm{v}_{\mathrm{tri}}=\mathrm{f}_{\mathrm{s}}$
\Rightarrow Frequency of $v_{\text {control }}=f_{1}$
where, $f_{s}=$ PWM frequency
$\mathrm{f}_{1}=$ Fundamental frequency
- Inverter output voltage

$$
\begin{aligned}
& \Rightarrow \text { When } \mathrm{v}_{\text {control }}>\mathrm{v}_{\mathrm{tri}}, \mathrm{~V}_{\mathrm{A} 0}=\mathrm{V}_{\mathrm{dc}} / \mathbf{2} \\
& \Rightarrow \text { When } \mathrm{v}_{\text {control }}<\mathrm{v}_{\text {tri }}, \mathrm{V}_{\mathrm{A} 0}=-\mathrm{V}_{\mathrm{dc}} / \mathbf{2} \\
& \text { where, } \mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{A} 0}-\mathrm{V}_{\mathrm{B} 0} \\
& \mathrm{~V}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{B} 0}-\mathrm{V}_{\mathrm{C} 0} \\
& \mathrm{~V}_{\mathrm{CA}}=\mathrm{V}_{\mathrm{C} 0}-\mathrm{V}_{\mathrm{A} 0}
\end{aligned}
$$

Fig. 7 Waveforms of three-phase sine PWM inverter.
II. PWM METHODS
A. Sine PWM (3)
\Rightarrow Amplitude modulation ratio $\left(\mathrm{m}_{\mathrm{a}}\right)$
$\left.\therefore m_{a}=\frac{\text { peak amplitude of } \quad v_{\text {control }}}{\text { amplitude of } v_{\text {tri }}}=\frac{\text { peak }}{\text { value of }\left(V_{A 0}\right)_{1}}\right)$,
where, $\left(\mathrm{V}_{\mathrm{A} 0}\right)_{1}$: fundamental frequecny component of $\mathrm{V}_{\mathrm{A} 0}$

Frequency modulation ratio $\left(\mathrm{m}_{\mathrm{f}}\right)$
$m_{f}=\frac{f_{s}}{f_{1}}$, where, $\mathrm{f}_{\mathrm{s}}=$ PWM frequency and $\mathrm{f}_{1}=$ fundamental frequency

- $\boldsymbol{m}_{\mathrm{f}}$ should be an odd integer
\Rightarrow if \mathbf{m}_{f} is not an integer, there may exist sunhamonics at output voltage
\Rightarrow if m_{f} is not odd, DC component may exist and even harmonics are present at output voltage
- m_{f} should be a multiple of 3 for three-phase PWM inverter
\Rightarrow An odd multiple of 3 and even harmonics are suppressed

II. PWM METHODS

B. Hysteresis (Bang-bang) PWM (1)
$>$ Three-phase inverter for hysteresis Current Control

Fig. 8 Three-phase inverter for hysteresis current control.

II. PWM METHODS
 B. Hysteresis (Bang-bang) PWM (2)

$>$ Hysteresis Current Controller

Fig. 9 Hysteresis current controller at Phase " a ".

Characteristics of hysteresis Current Control

- Advantages
\Rightarrow Excellent dynamic response
\Rightarrow Low cost and easy implementation
- Drawbacks
\Rightarrow Large current ripple in steady-state
\Rightarrow Variation of switching frequency
\Rightarrow No intercommunication between each hysterisis controller of three phases and hence no strategy to generate zero-voltage vectors. As a result, the switching frequency increases at lower modulation index and the signal will leave the hysteresis band whenever the zero vector is turned on.
\Rightarrow The modulation process generates subharmonic components

II. PWM METHODS
 C. Space Vector PWM (1)

$>$ Output voltages of three-phase inverter (1)

where, upper transistors: S_{1}, S_{3}, S_{5} lower transistors: $\mathbf{S}_{4}, \mathrm{~S}_{6}, \mathrm{~S}_{\mathbf{2}}$ switching variable vector: a, b, c

Fig. 10 Three-phase power inverter.

II. PWM METHODS
 C. Space Vector PWM (2)

$>$ Output voltages of three-phase inverter (2)

- S_{1} through S_{6} are the six power transistors that shape the ouput voltage
- When an upper switch is turned on (i.e., a, b or c is " 1 "), the corresponding lower switch is turned off (i.e., a^{\prime}, b' or c' is " 0 ")
\Rightarrow Eight possible combinations of on and off patterns for the three upper transistors $\left(\mathbf{S}_{1}, \mathbf{S}_{3}, \mathbf{S}_{5}\right)$
- Line to line voltage vector $\left[\mathrm{V}_{\mathrm{ab}} \mathrm{V}_{\mathrm{bc}} \mathrm{V}_{\mathrm{ca}}\right]^{\mathrm{t}}$

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{ab}} \\
\mathrm{~V}_{\mathrm{bc}} \\
\mathrm{~V}_{\mathrm{ca}}
\end{array}\right]=\mathrm{V}_{\mathrm{dc}}\left[\begin{array}{ccr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right] \text {, where switching variable vector }\left[\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c}
\end{array}\right]^{\mathrm{t}}
$$

- Line to neutral (phase) voltage vector $\left[\mathrm{V}_{\mathrm{an}} \mathrm{V}_{\mathrm{bn}} \mathrm{V}_{\mathrm{cn}}\right]^{\mathrm{t}}$

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{an}} \\
\mathrm{~V}_{\mathrm{bn}} \\
\mathrm{~V}_{\mathrm{cn}}
\end{array}\right]=\frac{1}{3} \mathrm{~V}_{\mathrm{dc}}\left[\begin{array}{lrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]
$$

II. PWM METHODS
 C. Space Vector PWM (3)

$>$ Output voltages of three-phase inverter (3)

- The eight inverter voltage vectors (V_{0} to V_{7})

II. PWM METHODS
 C. Space Vector PWM (4)

$>$ Output voltages of three-phase inverter (4)

- The eight combinations, phase voltages and output line to line voltages

$*$ Voltage	Switching Vectors			Line to neutral voltage			Line to line voltage		
	a	b	c	V_{an}	V_{bn}	V_{cn}	V_{ab}	V_{bc}	V_{ca}
V_{0}	0	0	0	0	0	0	0	0	0
$\mathrm{~V}_{1}$	1	0	0	$2 / 3$	$-1 / 3$	$-1 / 3$	1	0	-1
$\mathrm{~V}_{2}$	1	1	0	$1 / 3$	$1 / 3$	$-2 / 3$	0	1	-1
$\mathrm{~V}_{3}$	0	1	0	$-1 / 3$	$2 / 3$	$-1 / 3$	-1	1	0
$\mathrm{~V}_{4}$	0	1	1	$-2 / 3$	$1 / 3$	$1 / 3$	-1	0	1
$\mathrm{~V}_{5}$	0	0	1	$-1 / 3$	$-1 / 3$	$2 / 3$	0	-1	1
$\mathrm{~V}_{6}$	1	0	1	$1 / 3$	$-2 / 3$	$1 / 3$	1	-1	0
$\mathrm{~V}_{7}$	1	1	1	0	0	0	0	0	0

(Note that the respective voltage should be multiplied by V_{dc})
> Principle of Space Vector PWM

- Treats the sinusoidal voltage as a constant amplitude vector rotating at constant frequency
- This PWM technique approximates the reference voltage $\mathrm{V}_{\text {ref }}$ by a combination of the eight switching patterns (V_{0} to V_{7})
- CoordinateTransformation (abc reference frame to the stationary d-q frame)
: A three-phase voltage vector is transformed into a vector in the stationary $\mathrm{d}-\mathrm{q}$ coordinate frame which represents the spatial vector sum of the three-phase voltage
- The vectors $\left(\mathrm{V}_{1}\right.$ to $\left.\mathrm{V}_{6}\right)$ divide the plane into six sectors (each sector: 60 degrees)
- $\mathrm{V}_{\text {ref }}$ is generated by two adjacent non-zero vectors and two zero vectors

II. PWM METHODS
 C. Space Vector PWM (6)

> Basic switching vectors and Sectors

- 6 active vectors $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}\right)$
\Rightarrow Axes of a hexagonal
\Rightarrow DC link voltage is supplied to the load
\Rightarrow Each sector (1 to 6): 60 degrees
- 2 zero vectors ($\mathrm{V}_{0}, \mathrm{~V}_{7}$)
\Rightarrow At origin
\Rightarrow No voltage is supplied to the load

Fig. 11 Basic switching vectors and sectors.
$>$ Comparison of Sine PWM and Space Vector PWM (1)

Fig. 12 Locus comparison of maximum linear control voltage in Sine PWM and SV PWM.
$>$ Comparison of Sine PWM and Space Vector PWM (2)

- Space Vector PWM generates less harmonic distortion in the output voltage or currents in comparison with sine PWM
- Space Vector PWM provides more efficient use of supply voltage in comparison with sine PWM
\Rightarrow Sine PWM
: Locus of the reference vector is the inside of a circle with radius of $1 / 2 \mathrm{~V}_{\mathrm{dc}}$
\Rightarrow Space Vector PWM
: Locus of the reference vector is the inside of a circle with radius of $1 / \sqrt{3} V_{d c}$
\therefore Voltage Utilization: Space Vector PWM $=2 / \sqrt{ } 3$ times of Sine PWM

II. PWM METHODS
 C. Space Vector PWM (9)

> Realization of Space Vector PWM

- Step 1. Determine $\mathrm{V}_{\mathrm{d}}, \mathrm{V}_{\mathrm{q}}, \mathrm{V}_{\mathrm{ref}}$, and angle (α)
- Step 2. Determine time duration $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{\mathbf{0}}$
- Step 3. Determine the switching time of each transistor (S_{1} to S_{6})

II. PWM METHODS
 C. Space Vector PWM (10)

$>$ Step 1. Determine $\mathrm{V}_{\mathrm{d}}, \mathrm{V}_{\mathrm{q}}, \mathrm{V}_{\text {ref }}$, and angle (α)

- Coordinate transformation : abc to dq

$$
\begin{aligned}
\mathrm{V}_{\mathrm{d}} & =\mathrm{V}_{\mathrm{an}}-\mathrm{V}_{\mathrm{bn}} \cdot \cos 60-\mathrm{V}_{\mathrm{cn}} \cdot \cos 60 \\
& =\mathrm{V}_{\mathrm{an}}-\frac{1}{2} \mathrm{~V}_{\mathrm{bn}}-\frac{1}{2} \mathrm{~V}_{\mathrm{cn}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{q}}=0+\mathrm{V}_{\mathrm{bn}} \cdot \cos 30-\mathrm{V}_{\mathrm{cn}} \cdot \cos 30 \\
&=\mathrm{V}_{\mathrm{an}}+\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{bn}}-\frac{\sqrt{3}}{2} \mathrm{~V}_{\mathrm{cn}} \\
& \therefore\left[\begin{array}{l}
\mathrm{V}_{\mathrm{d}} \\
\mathrm{~V}_{\mathrm{q}}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{an}} \\
\mathrm{~V}_{\mathrm{bn}} \\
\mathrm{v}_{\mathrm{cn}}
\end{array}\right] \\
&\left|\overline{\mathrm{V}}_{\mathrm{ref}}\right|=\sqrt{\mathrm{V}_{\mathrm{d}}^{2}+\mathrm{V}_{\mathrm{q}}^{2}} \\
& \alpha=\tan ^{-1}\left(\frac{\mathrm{~V}_{\mathrm{q}}}{\mathrm{~V}_{\mathrm{d}}}\right)=\omega_{\mathrm{s}} \mathrm{t}=2 \pi \pi_{\mathrm{s}} \mathrm{t}
\end{aligned}
$$

(where, $\mathrm{f}_{\mathrm{s}}=$ fundamental frequency)
Fig. 13 Voltage Space Vector and its components in (d, q).

II. PWM METHODS
 C. Space Vector PWM (11)

$>$ Step 2. Determine time duration $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{0}(\mathbf{1})$

Fig. 14 Reference vector as a combination of adjacent vectors at sector 1.

II. PWM METHODS
 C. Space Vector PWM (12)

$>$ Step 2. Determine time duration $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{\mathbf{0}}$ (2)

- Switching time duration at Sector 1

$$
\begin{aligned}
& \int_{0}^{\mathrm{T}_{\mathrm{z}}} \overline{\mathrm{~V}}_{\text {ref }}=\int_{0}^{\mathrm{T}_{1}} \overline{\mathrm{~V}}_{1} \mathrm{dt}+\int_{\mathrm{T} 1}^{\mathrm{T}_{1}+\mathrm{T}_{2}} \overline{\mathrm{~V}}_{2} \mathrm{dt}+\int_{\mathrm{T}_{1}+\mathrm{T}_{2}}^{\mathrm{T}_{\mathrm{z}}} \overline{\mathrm{~V}}_{0} \\
& \therefore \mathrm{~T}_{\mathrm{Z}} \cdot \overline{\mathrm{~V}}_{\text {ref }}=\left(\mathrm{T}_{1} \cdot \overline{\mathrm{~V}}_{1}+\mathrm{T}_{2} \cdot \overline{\mathrm{~V}}_{2}\right) \\
& \Rightarrow \mathrm{T}_{\mathrm{Z}} \cdot\left|\overline{\mathrm{~V}}_{\text {ref }}\right| \cdot\left[\begin{array}{l}
\cos (\alpha) \\
\sin (\alpha)
\end{array}\right]=\mathrm{T}_{1} \cdot \frac{2}{3} \cdot \mathrm{~V}_{\mathrm{dc}} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\mathrm{T}_{2} \cdot \frac{2}{3} \cdot \mathrm{~V}_{\mathrm{dc}} \cdot\left[\begin{array}{l}
\cos (\pi / 3) \\
\sin (\pi / 3)
\end{array}\right] \\
& \left.\quad \text { (where, } 0 \leq \alpha \leq 60^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore T_{1}=T_{z} \cdot a \cdot \frac{\sin (\pi / 3-\alpha)}{\sin (\pi / 3)} \\
& \therefore T_{2}=T_{z} \cdot a \cdot \frac{\sin (\alpha)}{\sin (\pi / 3)}
\end{aligned}
$$

$$
\left.\therefore T_{0}=T_{z}-\left(T_{1}+T_{2}\right), \quad \text { where, } \quad \mathrm{T}_{\mathrm{z}}=\frac{1}{\mathrm{f}_{\mathrm{s}}} \quad \text { and } \quad \mathrm{a}=\frac{\left|\overline{\mathrm{V}}_{\mathrm{ref}}\right|}{\frac{2}{3} \mathrm{~V}_{\mathrm{dc}}}\right)
$$

II. PWM METHODS
 C. Space Vector PWM (13)

$>$ Step 2. Determine time duration $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{0}$ (3)

- Switching time duration at any Sector

$$
\begin{aligned}
& \therefore T_{1}=\frac{\sqrt{3} \cdot T_{z} \cdot|\bar{V} r e f|}{V_{d c}}\left(\sin \left(\frac{\pi}{3}-\alpha+\frac{n-1}{3} \pi\right)\right) \\
& \\
& =\frac{\sqrt{3} \cdot T_{z} \cdot|\bar{V} r e f|}{V_{d c}}\left(\sin \frac{n}{3} \pi-\alpha\right) \\
& =\frac{\sqrt{3} \cdot T_{z} \cdot|\bar{V} r e f|}{V_{d c}}\left(\sin \frac{n}{3} \pi \cos \alpha-\cos \frac{n}{3} \pi \sin \alpha\right) \\
& \therefore T_{2}=\frac{\sqrt{3} \cdot T_{z} \cdot|\bar{V} r e f|}{V_{d c}}\left(\sin \left(\alpha-\frac{n-1}{3} \pi\right)\right) \\
& \quad=\frac{\sqrt{3} \cdot T_{z}|\bar{V} r e f|}{V_{d c}}\left(-\cos \alpha \cdot \sin \frac{n-1}{3} \pi+\sin \alpha \cdot \cos \frac{n-1}{3} \pi\right) \\
& \therefore T_{0}=T_{z}-T_{1}-T_{2}, \quad\left(\begin{array}{c}
\text { where, } \mathrm{n}=1 \text { through } 6(\text { that is,Sectorl to } 6) \\
0 \leq \alpha \leq 60^{\circ}
\end{array}\right.
\end{aligned}
$$

II. PWM METHODS
 C. Space Vector PWM (14)

$>$ Step 3. Determine the switching time of each transistor $\left(\mathrm{S}_{1}\right.$ to $\left.\mathrm{S}_{6}\right)(1)$

Fig. 15 Space Vector PWM switching patterns at each sector.

II. PWM METHODS
 C. Space Vector PWM (15)

$>$ Step 3. Determine the switching time of each transistor (S_{1} to S_{6}) (2)

Fig. 15 Space Vector PWM switching patterns at each sector.

II. PWM METHODS
 C. Space Vector PWM (16)

$>$ Step 3. Determine the switching time of each transistor (S_{1} to S_{6}) (3)

Fig. 15 Space Vector PWM switching patterns at each sector.

II. PWM METHODS
 C. Space Vector PWM (17)

$>$ Step 3. Determine the switching time of each transistor $\left(\mathrm{S}_{1}\right.$ to $\left.\mathrm{S}_{6}\right)(4)$

Table 1. Switching Time Table at Each Sector

Sector	Upper Switches ($\mathbf{S}_{1}, \mathbf{S}_{3}, \mathbf{S}_{5}$)	Lower Switches ($\mathbf{S}_{4}, \mathrm{~S}_{6}, \mathrm{~S}_{2}$)
1	$\begin{aligned} & S_{1}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{3}=T_{2}+T_{0} / 2 \\ & S_{5}=T_{0} / 2 \end{aligned}$	$\begin{aligned} & S_{4}=T_{0} / 2 \\ & S_{6}=T_{1}+T_{0} / 2 \\ & S_{2}=T_{1}+T_{2}+T_{0} / 2 \end{aligned}$
2	$\begin{aligned} & S_{1}=T_{1}+T_{0} / 2 \\ & S_{3}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{5}=T_{0} / 2 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4}=\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{6}=\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \end{aligned}$
3	$\begin{aligned} & S_{1}=T_{0} / 2 \\ & S_{3}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{5}=T_{2}+T_{0} / 2 \end{aligned}$	$\begin{aligned} & S_{4}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{6}=T_{0} / 2 \\ & S_{2}=T_{1}+T_{0} / 2 \end{aligned}$
4	$\begin{aligned} & S_{1}=T_{0} / 2 \\ & S_{3}=T_{1}+T_{0} / 2 \\ & S_{5}=T_{1}+T_{2}+T_{0} / 2 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{6}=\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{2}=\mathrm{T}_{0} / 2 \end{aligned}$
5	$\begin{aligned} & S_{1}=T_{2}+T_{0} / 2 \\ & S_{3}=T_{0} / 2 \\ & S_{5}=T_{1}+T_{2}+T_{0} / 2 \end{aligned}$	$\begin{aligned} & S_{4}=T_{1}+T_{0} / 2 \\ & S_{6}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{2}=T_{0} / 2 \end{aligned}$
6	$\begin{aligned} & S_{1}=T_{1}+T_{2}+T_{0} / 2 \\ & S_{3}=T_{0} / 2 \\ & S_{5}=T_{1}+T_{0} / 2 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4}=\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{6}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \\ & \mathrm{~S}_{2}=\mathrm{T}_{2}+\mathrm{T}_{0} / 2 \end{aligned}$

III. REFERENCES

[1] N. Mohan, W. P. Robbin, and T. Undeland, Power Electronics: Converters, Applications, and Design, 2nd ed. New York: Wiley, 1995.
[2] B. K. Bose, Power Electronics and Variable Frequency Drives:Technology and Applications. IEEE Press, 1997.
[3] H.W. van der Broeck, H.-C. Skudelny, and G.V. Stanke, "Analysis and realization of a pulsewidth modulator based on voltage space vectors," IEEE Transactions on Industry Applications, vol.24, pp. 142-150, 1988.

