PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : شروع کار با xmega



n340
16-04-2011, 18:27
سلام کسی اینجا هست
که با xmega شروع به کار کرده باشه
من با کدویژن کار م می کنم
اعلام کنید سوال بپرسیم

kavir
16-04-2011, 19:45
سلام
خوب سوال هم می پرسید اگر کسی می دونست کمک می کرد

pooriya
16-04-2011, 21:03
سلام
من یه مدت پیش با هاش کار میکردم البته الان هم کار می کنم به صورت ترکیبی(arm,xmega)با کامپایلر های IAR,MIKROC PRO AVR کار کردم والبته یه دستی به سروگوشه CODEVISION هم کشیدم (برای XMEGA) اگه کمکی از دستم بر بیاد در خدمتیم.

javad naderi
17-04-2011, 01:04
آموزش شروع کار با میکروکنترلرهای XMEGA


You can see links before reply


آخرین سری از خانواده میکروکنترلر های avr که مدتی است ارائه شده است سری xmega میباشد که دراین بخش به معرفی برخی از مهمترین ویژگی های ان میپردازیم


CLOCK

از جمله اولین نکات این خانواده این است که تا ۳۲ مگاهرتز کلاک را قبول می کنند که در مقایسه با حداکثر ۲۰ مگاهرتزی AVR های معمول، تقریبا دوبرابر سرعت را تامین میکنند و همچنین این کلاک ۳۲ مگاهرتز می تواند بصورت اسیلاتور داخلی و بدون نیاز به هیچ کریستالی تامین شود. همچنین برای تنظیم کلاک احتیاج به تغییر فیوزبیت نیست و این کار از طریق تغییر رجیسترهای داخلی انجام می شود. همیشه در ابتدای شروع به کار آی سی ابتدا بصورت خودکار کلاک داخلی ۲مگاهرتز انتخاب می شود و سپس بوسیله کدهای نوشته شده، نوع کلاک، قابل تغییر است.

یک مکانیزم بسیار جالب در این آی سی قابل فعال سازی است که حتی در صورتی که کلاک خارجی فعال باشد و به هر دلیلی عمل نکند،CPU بصورت اتوماتیک روی کلاک داخلی سوئیچ کند. بنابراین کلیه مشکلاتی که در AVR های معمولی به دلیل تنظیم غلط فیوزبیت ها و یا از کار افتادن کریستال یا اسیلاتور خارجی بوجود می آید، در مورد این آی سی می تواند موضوعیت نداشته باشد. وجود PLL داخلی هم از ویژگی های دیگر این خانواده است که بوسیله آن می توان انواع کلاک ها را از یک منبع ثابت بدست آورد و همچنین یک مکانیزم( DFLL(Digital Frequency Locked Loop هم قابل فعال سازی است که اسیلاتور دائما مقدار خود را تصحیح می کند و پایداری و صحت کلاک بهبود می یابد. البته با استفاده از PLL داخلی میتوان cpu را over clock کرد و حداکثر تا 64MHz بالا برد ولی در این حالت احتمال دارد میکرو درست کار نکند.



رجیسترهای متنوع و متعدد کنترلی



به دلیل وجود رجیسترهای کنترلی متعددی که در خانواده XMEGA وجود دارد، امکان نوشتن کدهای بسیار سریعتر و توانمندتری در این خانواده بوجود آمده که حتی در یک کلاک برابر، می تواند سرعت اجرا را بالاتر ببرد. به عنوان یک مثال، برای تصحیح وضعیت چند بیت یک PORT در حین حفظ وضعیت بقیه بیت ها، در AVR های معمولی باید ابتدا مقدار PORT خوانده شود و بعد از تصحیح مقدار، مجددا در محل خود نوشته شود. اما در سری XMEGA برای set و reset و not کردن بیت ها، ۳ رجیستر مجزا وجود دارد.

بنابراین بدون آنکه نیازی وجود داشته باشد که مقدار وضعیت فعلی PORT خوانده شود می توان چند بیت آنرا بصورت همزمان set یا reset یا not کرد. امثال چنین امکاناتی می تواند منجر به بهبود راندمان زمان اجرای نرم افزار در طول یک کد طولانی شود و انجام یک کار واحد را برای یک XMEGA که کلاک برابری با یک AVR معمولی دارد، در زمان کمتری میسر کند. در مورد قسمت های دیگر سخت افزار هم کنترل زیادی از طریق رجیسترهای متعدد داخلی وجود دارد که هرچند شناخت آنرا پیچیده تر می کند، اما دست برنامه نویس را برای انجام عملیات پیچیده و سریعتر، بسیار باز می گذارد.


پورت‌ها

عملکرد پورتها در خانواده XMEGA بسیار کاملتر از AVR های معمولی است. همانگونه که اطلاع دارید، پورتهای AVR یا خروجی هستند که دو وضعیت LOW و HIGH را میتوانند داشته باشند و یا ورودی هستند که pull up داخلی می تواند فعال یا غیر فعال باشد. اما در XMEGA هم pull up و هم pull down قابلیت فعال شدن در ورودی و خروجی را دارند و همچنین وضعیت های totem pole، BUS Keeper، Wired-OR، Wired-AND برای پورتها قابل تعریف است. هر یک از این حالت ها، امکانات مجزایی را برای کار با پورتها در اختیار قرار می دهند که بیشتر آنها در پورتهای AVR عادی قابل پیاده سازی نیست. مثلا اگر چند خروجی در وضعیت Wired-OR قرار داده شوند، این امکان وجود دارد که تمام این پین ها با وجودی که خروجی هستند، به یکدیگر متصل شوند و با قرار دادن pull down خارجی یا فعال سازی pull down داخلی، هر خروجی که high باشد، تعیین کننده وضعیت خروجی کل باشد و سایر خروجی هایی که low هستند در این وضعیت بی تاثیر باشند.

همچنین این امکان وجود دارد که یک منطق NOT برای ورودی یا خروجی فعال شود که مثلا برای وضعیت ورودی، هر منطقی که به پین ورودی اعمال شود به صورت معکوس خوانده شود.

یک امکان دیگر پورتهای XMEGA وجود پورتهای مجازی یا virtual port است که توضیح آن در این مقال نمی گنجد. اما به طور خلاصه به این معناست که یکسری پورت مجازی را به پورتها واقعی نسبت می دهیم و هر عملی که روی پورت مجازی انجام شود، روی پورت معادل آن تاثیر خواهد گذاشت و ۴ پورت مجازی در سری XMEGA وجود دارد.


Totem pole

این وضعیت شبیه عملکرد پورت های AVR های عادی است. به این ترتیب که اگر پورت به عنوان خروجی تعریف شود، LOW و HIGH از یک درایور خروجی تامین می شوند که چه بصورت source و چه بصورت sink ، جریان را تامین می کند. در وضعیت ورودی هم اگر pull up فعال نباشد، ورودی حالت float دارد.
Wired-AND

این وضعیت تا حدودی شبیه پورت های ۸۰۵۱ است. به این معنی که در صورت صفر کردن خروجی، یک سوئیچ نیمه هادی روشن می شود و خروجی را low می کند و در صورت یک شدن آن، باید مقاومت pull up لازم در خروجی سوئیچ نیمه هادی قرار داشته باشد تا وضعیت high را ایجاد کند. این مقاومت می تواند بصورت داخلی فعال شود و یا در خارج IC قرار بگیرد. خروجی هایی که در وضعیت Wired-AND قرار داده شوند، قابلیت وصل شدن به یکدیگر را دارند و آن خروجی یا خروجی هایی که low باشند، خود را به بقیه تحمیل می کنند.
Wired-OR

عکس عملکرد وضعیت قبل را دارد و در صورت یک کردن خروجی، یک سوئیچ نیمه هادی روشن می شود و خروجی را high می کند و در صورت صفر شدن آن، باید مقاومت pull down لازم در خروجی سوئیچ نیمه هادی قرار داشته باشد تا وضعیت low را ایجاد کند.


Bus-keeper

با قرار گرفتن پورت در این وضعیت، این امکان بوجود می آید که وضعیت قبلی پورت زمانی که بصورت خروجی است، در تغییر وضعیت پورت به وضعیت ورودی از نظر low و high بودن همچنان حفظ شود. این کار از طریق فعال سازی هوشمند pull up و pull down بصورت خودکار انجام می شود. به این معنی که اگر وضعیت قبلی خروجی low بوده، pull down را فعال می کند و اگر هم high بوده که pull up را فعال می کند. بنابراین وضعیت پورت از نظر high و low بودن همچنان حفظ می شود.
Virtual port

به دلیل نظام خاص آدرس دهی XMEGA و اینکه بتوان دستوراتی مانند IN و OUT را در مورد پورتها بکار برد، تعبیه شده است. برای درک بهتر این نوع پورتها باید به جزئیات آدرس دهی رجیسترهای داخلی XMEGA مراجعه کنید و خواهید دید که آدرس پورتها در خارج از فضای I/O memory space قرار دارند. بنابراین با map کردن پورتهای واقعی به مجازی و دانستن این موضوع که پورتهای مجازی در فضای I/O memory space قرار دارند، دلیل وجود آنها روشن تر خواهد شد.


تعیین اولویت(priority) وقفه‌ها

یکی از اشکالات بسیار بزرگ خانواده AVR که از این نظر حتی از سری ۸۰۵۱ هم ضعیفتر می باشد، عدم امکان تعریف اولویت(priority) وقفه هاست. در این خانواده تنها یک اولویت از نوع ابتدایی بین وقفه ها وجود دارد به این معنی که هرگاه دو وقفه با هم از CPU تقاضا شوند، وقفه ای که از نظر آدرس بردار وقفه دارای مقدار کوچکتری است، ابتدا مورد پاسخگویی قرار می گیرد.

اما آن شکلی از تعریف اولویت که در میکروکنترلرهایی مانند ۸۰۵۱ وجود دارد، که به CPU این اجازه را می دهد که در وسط اجرای روتین یک وقفه با اولویت پائین تر، به وقفه با اولویت بالاتر پاسخ دهد در AVR های معمولی وجود ندارد. این موضوع ضعف و خلاء بسیار بزرگی برای AVR محسوب می شود که در برنامه نویسی حرفه ای می تواند بسیار مشکل ساز باشد.

اما تمام این مسائل در سری XMEGA حل شده است و به غیر از اینکه ۳ سطح اولویت برای وقفه ها قابل تعریف است، یک وقفه( NMI(Non Maskable Interrupt هم وجود دارد که اصولا توسط وقفه های دیگر قابل disable شدن نیست و برای عملیات حساسی مانند از کار افتادن اسیلاتور کریستالی و مانند آن مورد استفاده قرار می گیرد. بنابراین سیستم مدیریت وقفه در خانواده XMEGA بسیار قوی تر از سری های AVR است و از این نظر بسیار کاراتر و توانمندتر عمل می کند.


Event system

مجموعه ای از ارتباط بین اجزای داخلی است که قدرت و انعطاف زیادی را برای استفاده از امکانات داخلی XMEGA ایجاد می کند. با استفاده از این سیستم می توان بدون درگیر کردن CPU و یا ایجاد هرگونه وقفه ای، تغییرات یک بخش را به عنوان فرمان تغییر و Trigger بخش دیگر به کار گرفت.

تایمرها، ADC ، مقایسه کننده آنالوگ، RTC ، پورتها و کلاک سیستم و فرمان های نرم افزاری می توانند به عنوان منابع ایجاد Event تعریف شوند. همچنین تایمرها، ADC، DAC، DMA و پورتها و ماژول ارتباط IR می توانند از منبع Event مورد نظر برای تغییرات خود فرمان بگیرند.

به عنوان چند مثال از طریق استفاده از همین سیستم می توان overflow شدن یک تایمر ۱۶ بیتی را به عنوان فرمان clock یک تایمر ۱۶ بیتی دیگر تعریف کرد و بدون استفاده از هر وقفه ای، یک تایمر ۳۲ بیتی ساخت. یا مثلا می توان سیستم را طوری تنظیم کرد که در مقدار مشخصی از RTC، فرمان تبدیل ADC انجام شود. یا با تغییراتی در یک پین ورودی، خروجی DAC در مقدار جدید قرار بگیرد. در این خانواده ۸ کانال Event در دسترس است که شامل ۸ multiplexer است که با تنظیم آنها می توان هر Event را به عنوان منبع trigger مقصد مورد نظر هدایت کرد. هر کانال Event شامل یک فیلتر دیجیتال است که این امکان را به وجود می آورد که محدوده ای بین ۱ تا ۸ sample را برای پایدار بودن اجباری Event مورد نظر تعریف کنیم تا وجود آن موثر واقع شود.

البته این بحث بسیار گسترده است و نمی توان انتظار داشت که تمام ابعاد آن در اینجا روشن شود. اما بصورت خلاصه وجود Event System باعث ایجاد یک ارتباط سخت افزاری از طریق برنامه نویسی بین اجزای مختلف XMEGA می شود، بصورتی که به عنوان یک مجموعه به هم پیوسته و واحد عمل کنند و این امکان برای یک برنامه نویس توانمند، فرصت مغتنمی محسوب می شود تا بتواند کاربرد های پیچیده و پیشرفته ای را با XMEGA پیاده سازی کند که انجام آن با AVR های عادی مقدور نباشد.


QDEC

به عنوان کاربردی از Event System که تنها در حد عنوان اشاره می شود، خانواده XMEGA قابلیت و سخت افزار لازم برای اتصال به Quadrature encoder ها(مانند Shaft encoder هایی که به موتورها وصل می شوند)، دارا می باشند و تشخیص جهت encoder و مقدار آن و عبور از مبدا را بصورت سخت افزاری ساپورت می کنند.

تایمرها

در خانواده AVR های معمولی، در شماره های ضعیف تر مانند tiny13 فقط یک تایمرهای ۸ بیتی وجود دارد و در شماره های توانمندتر مانند mega128 هم حداکثر ۲ تایمر ۱۶ بیتی و ۲ تایمر ۸بیتی وجود دارد و حداکثر ظرفیت AVR هم وجود ۴ تایمر ۱۶ بیتی و ۲ تایمر ۸ بیتی در شماره هایی مانند mega2560 است.اما تایمر های XMEGA همگی ۱۶بیتی هستند و تعداد آنها هم از ۴ عدد تا ۸ عدد متغیر است. این درحالی است که با استفاده از ظرفیت Event system که قبلا به آن اشاره شد، می توان به تایمرهایی بزرگتر از ۱۶ بیت هم بدون استفاده از وقفه ها دست پیدا کرد.

نکته دیگر اینکه در AVR، کنترلی روی جهت شمارش تایمر وجود ندارد و تایمر در وضعیتهای Normal و CTC و Fast-PWM بصورت افزایشی و در مدهای Phase corret PWM و Phase-frequency correct PWM هم بصورت افزایشی و کاهشی متوالی عمل می کند. اما جهت شمارش تایمر های XMEGA بصورت دلخواه توسط یک بیت کنترلی قابل تغییر است و این امکان بسیار خوبی محسوب می شود.

نکته بسیار مهم دیگر وجود تعداد قابل توجهی خروجی PWM در خانواده XMEGA است که بین ۱۴ تا ۲۴ خروجی PWM را در شماره های فعلی این خانواده شامل می شود. وجود این خروجی های PWM به علاوه امکان دیگری به نام (AWEX(Advanced Waveform Extension که بعدا توضیح داده می شود، خانواده XMEGA را به ابزار بسیار قدرتمندی برای کاربردهایی مانند کنترل موتور و رباتیک و نظایر آن تبدیل می کند و این در حالی است که تعداد خروجی های PWM در AVR های معمولی بسیار کمتر از این تعداد است ( ۴ عدد در mega32 و ۸ عدد در mega128 و ۱۶ عدد در mega2560 که حداکثر تعداد در AVR است). ضمن اینکه امکانات کنترل و مدیریت PWM هم در XMEGA قوی تر و کاراتر می باشد.

از جمله کاربردهای این تایمرها، وجود امکان اندازه گیری فرکانس و اندازه گیری عرض پالس بصورت سخت افزاری است که در فرکانس مترها و اندازه گیری های دقیق زمانی بکار می رود و کاربردهای متعدد دیگر که مستلزم آشنایی دقیق با ساختار تایمرهای XMEGA است.


AWeX

AWeX یا Advanced Waveform Extension یک واحد سخت افزاری طراحی شده برای پیاده سازی عملیات کنترل دور موتور و درایورهای قدرت است. وجود ۳ توانایی سخت افزاری Dead time insertion، Pattern generation وFault protection برای کاربردهای کنترل موتور و مانند آن پیش بینی شده و کارکردن با آن مستلزم آشنایی کامل با مبانی عملکرد درایورهای قدرت می باشد.

در مورد Dead time insertion می توان این توضیح را ارائه کرد که در یک پل (Bridge) تشکیل شده از سوئیچ های قدرت مانند Mosfet یا IGBT، بین خاموش شدن هر سوئیچ قدرت و روشن شدن سوئیچ دومی که در همان بازو قرار دارد، باید یک زمان حداقل در حد میکروثانیه تاخیر وجود داشته باشد. در غیر اینصورت قبل از اینکه جریان سوئیچ روشن به صفر برسد، سوئیچ دوم هم روشن خواهد شد و یک جریان بسیار شدید بین ولتاژ مثبت و منفی پل ایجاد می شود و در یک لحظه باعث از بین رفتن سوئیچ های قدرت خواهد شد( به این جریان shoot through هم گفته می شود). به این زمان تاخیر به اصطلاح Dead time گفته می شود که یک منبع تولید فرمان برای درایور، باید بتواند آنرا بصورت سخت افزاری تامین کند. در واحد AWeX خانواده XMEGA، چنین امکانی پیش بینی شده که مقدار Dead time بصورت نرم افزاری و توسط رجیسترهای کنترلی یکبار تعریف و به سخت افزار اعمال شود.

Pattern generation برای تولید یک Bit Pattern مشخص روی پورت خروجی و برای کنترل موتورهایی مانند BLDC و استپر موتور کاربرد دارد و باید بصورت یک بحث مستقل و کاملا تخصصی در آینده مطرح شود.

Fault protection هم یک واحد پیش بینی شده برای درایورهای قدرت و در جهت واکنش سریع و مشخص در شرایط وقوع fault می باشد. برای کنترل کاربردهای قدرت لازم است این امکان بصورت سخت افزاری پیش بینی شود که در هنگام وقوع fault و خطا، واکنش سریع و از قبل معینی انجام شود و مثلا فرمان خروجی به سوئیچ های قدرت به سرعت قطع شوند و این امر نباید معطل اجرای نرم افزار بماند. چرا که در غیر اینصورت ممکن است به علت جریان کشی بیش از حد به از بین رفتن سوئیچ های قدرت و مواردی از این دست منجر شود. بنابراین واحدی که تحت برنامه ریزی قبلی نرم افزار بصورت سخت افزاری به شرایط خطا پاسخ دهد، از جمله امکاناتی است که در XMEGA پیش بینی شده و امکان استفاده از آن را به عنوان یک کنترل کننده و نظارت کننده بر پروسه های در محدوده زمانی میکروثانیه و کمتر، بوجود می آورد.


ADC

تفاوتهای زیادی بین ADC داخلی خانواده XMEGA با AVR های معمولی وجود دارد که شاخص ترین آن دقت و سرعت تبدیل آن است. دقت ADC این خانواده ۱۲ بیت است و قابلیت نمونه برداری تا ۲ میلیون نمونه در ثانیه (۲ MSPS) را دارد. از نظر تعداد ورودی آنالوگ هم بین گروه های مختلف XMEGA تفاوت وجود دارد و در گروهی که با پسوند A4 نوشته می شوند،یک کانال با ۱۲ ورودی و در گروه های A3 و A1 هم ۲ کانال مستقل با ۸ ورودی وجود دارند (درگروههای D4 و D3 هم ۱×۱۲ و ۱×۱۶ ورودی وجود دارند).

از جمله نکات دیگر این ADC قابلیت تبدیل ۴ سیگنال آنالوگ بصورت همزمان و با روش Pipeline است و به همین دلیل ۴ سری رجیستر داخلی برای ذخیره سازی این ۴ گروه نتیجه دارد.

از نظر ولتاژ مرجع (Reference)، چند امکان برای انتخاب وجود دارد که شامل ولتاژ دقیق ۱ ولت داخلی، Vcc/1.6 و ولتاژ مرجع خارجی است. در گروه های A1 و A3 دو ورودی مختلف به عنوان ولتاژمرجع اختصاص داده شده است.

امکان خواندن ورودی ها بصورت تفاضلی، اعمال بهره تقویت ۱ تا ۶۴، و امکان محاسبه مقدار ورودی بصورت علامت دار، از دیگر امکانات ADC این خانواده است.

یکی از موارد مهم قابل ذکر، وجود سنسور دمای داخلی در XMEGA است که نیاز به قرار دادن سنسور دما در خارج از IC را برای سنجش دما برطرف می کند. این امکان وجود دارد که خروجی این سنسور بصورت داخلی به ورودی ADC متصل و مقدار آن محاسبه شود. همچنین امکان اندازه گیری Vcc اعمال شده به IC و خروجی DAC و ولتاژ مرجع داخلی هم از طریق ADC وجود دارد.

در عملکرد خانواده XMEGA، یک ساختار Compare function وجود دارد به این معنی که مقدار ADC بصورت دائمی با یک رجیستر از پیش تعیین شده ۱۲ بیتی مقایسه می شود و می توان وقفه یا Event را در صورت کوچکتر یا بزرگتر بودن از این رجیستر فعال کرد. و بالاخره اینکه امکان انتقال نتایج عملیات ADC توسط DMA ( که بعدا توضیح داده می شود)در حافظه قابل فعال کردن است و این روش برای درگیر نکردن CPU و ذخیره سازی سریع اطلاعات در تبدیلات متوالی می تواند بکار برده شود.


DAC

وجود مبدل دیجیتال به آنالوگ ۱۲ بیتی و با سرعت حداکثر ۱ میلیون تبدیل در ثانیه، از جمله مزیت هایی در خانواده XMEGA است که در خانواده AVR های معمولی به کلی وجود ندارد و زمینه را برای انجام عملیاتی که با تولید سیگنال های آنالوگ سر و کار دارند، فراهم می کند.

در اینجا ذکر یک توضیح فنی لازم است که هرچند با قرار دادن یک فیلتر پائین گذر در خروجی PWM می توان سیگنال های آنالوگ را تولید کرد. اما حداکثر فرکانس این سیگنال آنالوگ باید تفاوت قابل توجهی با فرکانس PWM داشته باشد تا بتواند توسط فیلتر پائین گذر و با دقت بالا، جداسازی شود. حداکثر فرکانس PWM قابل حصول برای AVR در مد fast PWM و با فرض کلاک ۲۰ مگاهرتز و ۸ بیتی بودن PWM، برابر ۷۸٫۱۲۵ کیلوهرتز است. بنابراین تغیییرات سیگنال آنالوگ تولید شده توسط PWM باید بسیار کمتر از این باشد تا بتواند به خوبی جدا شود. اما وجود DAC ، زمینه را برای کاربردهایی مانند تولید صدای خروجی بصورت استریو و یا تولید سیگنال های آنالوگ با فرکانس نسبتا بالا را برای XMEGA فراهم می کند.

هر واحد DAC دارای دو خروجی مستقل آنالوگ است که هریک رجیستر دیتای خاص خود را دارند. در گروه با پسوند A3 و A4 یک واحد DAC و در گروه A1 دو واحد DAC(یعنی ۴ خروجی مستقل آنالوگ) وجود دارند.

برای تبدیلات DAC یک ولتاژ مرجع قابل تعیین است که می تواند از Vcc یا ولتاژ مرجع داخلی و یا ولتاژ دلخواه متصل به پایه تعریف شده برای این کار، تامین شود.

خروجی انالوگ DAC بصورت نرم افزاری قابل کالیبره کردن و تغییر Offset خروجی است و این کار می تواند به کمک اتصال داخلی خروجی DAC به ورودی ADC و خواندن مقدار آن و یا قرائت خروجی آنالوگ از بیرون انجام شود.

خروجی DAC همچنین می تواند بصورت داخلی به مقایسه کننده آنالوگ موجود در XMEGA متصل و ولتاژ آن با ولتاژهای دیگری مقایسه شود که این امکان برای برخی کاربردهای کنترل جریان و درایورهای قدرت، امکان فوق العاده ای محسوب می شود.

برای تولید سیگنال های آنالوگ با فرکانس نسبتا بالا از طریق قرار دادن متوالی دیتا در ورودی DAC، امکان بهره گیری از DMA داخلی XMEGA وجود دارد و در این شرایط بدون مشغول کردن بیجهت CPU، عملیات تولید سیگنال آنالوگ به خوبی انجام می شود. همچنین عملیات به روز سازی خروجی آنالوگ می تواند تحت مدیریت Event system انجام شود و بدون ایجاد بار نرم افزاری برای CPU و ایجاد هرگونه وقفه ای، وقوع Event تعیین شده، باعث به روز سازی و ایجاد تغییر مقدار در خروجی آنالوگ مورد نظر گردد.


controller

کنترل کننده( DMA(Direct Memory Access برای انتقال اطلاعات بین نواحی مختلف حافظه و رجیسترهای داخلی بکار می رود و بکارگیری صحیح آن، باعث کاهش بار پردازشی است که می تواند برای انتقال این اطلاعات به CPU تحمیل شود. وجود امکاناتی نظیر DMA و Event system در داخل XMEGA سبب می شود که کارایی و سرعت انجام عملیات در مقایسه با AVR های معمولی به شکل چشمگیری افزایش پیدا کند و در شرایطی که در AVR، انجام هر عملی باید با دخالت مستقیم CPU انجام شود، در XMEGA عملیات مختلف می توانند بصورت کاملا موازی و بدون مشغول کردن CPU به انجام برسند. بنابراین راندمان اجرای نرم افزار با کمک سخت افزار بسیار بالا می رود و شاید بتوان مثال هایی را مطرح کرد که برای یک XMEGA با کلاک ۲۰ مگاهرتز قابل انجام باشد ولی انجام آن در همان زمان برای یک AVR معمولی، اگر بجای ۲۰ مگاهرتز مثلا ۱۰۰ مگاهرتز هم کلاک قابل اعمال کردن بود، مقدور نباشد.

۴ کانال DMA مستقل در XMEGA وجود دارد که می توانند اطلاعات را در بلوک هایی با سایز قابل تعریف جابجا کنند و امکان تعریف اولویت (priority) هم بین این کانال ها وجود دارد.

بخش DMA از بخش های نسبتا پیچیده XMEGA از نظر نرم افزاری محسوب می شود و کار کردن با آن مستلزم تبحر و تسلط کافی به سایر بخش هایی است که DMA روی آن عمل می کند و برای کار با DMA باید یک شناخت جامع از اکثر بخش های XMEGA که با مسئله DMA ارتباط پیدا می کنند، وجود داشته باشد.


( EBI(External Bus interface

EBI یا External Bus interface واحد سخت افزاری اتصال به وسایل جانبی آدرس پذیر است که بطور خاص تا ۶۴ مگا بایت SRAM و ۱۲۸ مگابیت SDRAM را ساپورت می کند. این واحد عملیات Refresh کردن SDRAM را تحت کنترل نرم افزار به عهده می گیرد و از انواع ۴ و ۸ بیتی آن پشتیبانی می کند. یکی از نکاتی که تاکنون ذکر نشده این مطلب است که در ساختار داخلی XMEGA، دو کلاک ۲ برابر و ۴ برابر کلاک CPU وجود دارد که برای بعضی واحدهای داخلی استفاده می شود. EBI بطور خاص از کلاک دو برابر استفاده می کند و بنابراین تا کلاک حداکثر ۶۴ مگاهرتز را پشتیبانی می کند.

در پیکر بندی های مختلف واحد EBI ،دو یا سه یا چهار پورت بکار گرفته می شوند. در نوع اول با قرار دادن دو Latch در خروجی پورت J، از این پورت سیگنال های ۸ خط دیتا و ۱۶ خط آدرس ساخته می شود و خطوط کنترل هم از پورت H تامین می شوند.

در پیکر بندی با استفاده از ۳ پورت، امکان تولید ۱۶ و ۲۴ بیت آدرس با استفاده از یک یا دو Latch وجود دارد و امکان اتصال به SDRAM هم در حالت دیتای ۴ بیتی و بدون استفاده از هر گونه Latch فراهم است. در پیکر بندی با استفاده از ۴ پورت هم امکان تولید ۲۴ بیت آدرس با استفاده از یک Latch و امکان اتصال به SDRAM هم در حالت دیتای ۸ بیتی بدون Latch فراهم است.

به غیر از حافظه ها، سایر وسایل جانبی که دارای Address Bus، Data Bus و سیگنال های کنترلی Read Enable و Write Enable و Chip select هستند (مانند LCDها، PPI و … )، قابلیت اتصال به XMEGA از طریق EBI را دارند.


Crypto Engines

یکی از امکانات فوق العاده و درخشان خانواده XMEGA، وجود سخت افزار لازم برای کد کردن اطلاعات با الگوریتم های( DES(Data Encryption Standard و( AES(Advanced Encryption Standard است. برای توضیح در مورد این دو استاندارد می توانید Data Encryption Standard و Advanced Encryption Standard در ویکی‌پدیا را مطالعه کنید.

اساس کد کردن اطلاعات در الگوریتم DES بر مبنای یک کلید ۵۶ بیتی انجام می شود که با احتساب ۸ بیت به عنوان parity، عملیات روی ۶۴ بیت دیتا و یک کلید به طول ۶۴ بیت انجام می شود. روش کار به این صورت است که دیتای مورد نظر در رجیسترهای R0-R7 و کلید مورد نظر در رجیسترهای R8-R15 قرار می گیرند. در مجموعه دستور العمل های XMEGA، دستور اسمبلی DES به همین منظور پیش بینی شده که با ۱۶ بار اجرای آن و بسته به وضعیت H flag در رجیستر SREG، عملیات Encryption یا Decryption انجام می شود.

برای کد کردن با امنیت بالاتر اطلاعات، یک روش چند مرحله ای با عنوان ۳DS پیاده سازی می شود که اطلاعات در ۳ مرحله و با ۳ کلید مختلف به ترتیب Encrypte و بعد Decrypte و مجددا Encrypte می شود که این روش از امنیت بسیار بالاتری نسبت به DES تک مرحله ای برخوردار است و البته به سادگی با XMEGA قابل پیاده سازی است.

برای شکستن اطلاعات کد شده توسط این روش، نیاز به ارقام نجومی محاسبات و تست کلیدهای مختلف است. چنانکه در این آدرس مشخصات سیستمی ذکر شده که با بکار بردن ۱۸۵۶ پردازنده و صرف هزینه ۲۵۰۰۰۰ دلار، مدت ۹ روز طول کشیده تا بتواند رمز اطلاعات کد شده با روش DES را بشکند.

روش AES که نسخه پیشرفته تری برای کد کردن اطلاعات است، بر اساس طول دیتای ۱۲۸ بیت و طول کلید ۱۲۸ یا ۱۹۲ یا ۲۵۶ بیتی، عمل می کند. در روش AES حالتهای ممکن برای بدست آوردن اطلاعات اصلی به قدری زیاد است که دستیابی به اطلاعات را با امکانات فعلی و در زمان محدود، به مرزهای غیرممکن نزدیک می کند. روش اجرای عملیات AES در XMEGA به این صورت است که بعد از انجام تنظیمات لازم و پرکردن حافظه از دیتا و کد کلیدمورد نظر، بیت مربوط به شروع انجام عملیات در رجیستر مربوطه یک می شود و با پایان Encryption یا Decryption، وقفه مربوط به آن اتفاق می افتد و حاصل عملیات در حافظه قرار می گیرد. امکان انجام عملیات DES و AES بیشتر کاربرد نظامی دارد و از این نظر می تواند در ابزارهای نظامی و مخابراتی به کار گرفته شود.


مقایسه کننده آنالوگ

قبل از توضیح راجع به تفاوت مقایسه کننده آنالوگ در خانواده XMEGA با AVR های معمولی،ذکر این توضیح لازم است که استفاده از این مقایسه کننده ها برای تصمیم گیری های بسیار سریع روی ورودی های آنالوگ به دلیل سرعت بالای مقایسه کننده ها در تشخیص وضعیت ورودی، در کاربردهایی مانند درایورهای قدرت و مدارات کنترل جریان اهمیت زیادی دارد و در IC های switching regulator و کنترل موتور برای فیدبک گرفتن از ولتاژ یا جریان معمولا از عملکرد مقایسه کننده های آنالوگ استفاده می شود.

مقایسه کننده های آنالوگ در AVR های معمولی به تعداد یک عدد موجود است ( به غیر از برخی شماره های بسیار خاص مانند ATMEGA64M1 automotive ) . ورودی مثبت این مقایسه کننده در AVR می تواند از یک پین مشخص ورودی یا یک ولتاژ مرجع داخلی و ورودی منفی هم از یک پین مشخص ورودی یا پین های متصل به ADC فرمان بگیرد. خروجی این مقایسه کننده هم به غیر از تولید وقفه می تواند به عنوان فرمان Capture مربوط به TIMER1 بکار رود.

اما در خانواده XMEGA حداقل دو و حداکثر ۴ مقایسه کننده آنالوگ وجود دارد و امکانات به مراتب قوی تری نسبت به عملکرد مقایسه کننده های این خانواده به شرح زیر اضافه شده است.



ورودی های متنوع

چندین امکان مختلف برای اتصال به ورودی های مقایسه کننده ها، قابل انتخاب است. در همینجا باید به نکته ای اشاره شود که متاسفانه متون و document های ATMEL، مملو از اشتباهات چاپی و مفهومی مختلف هستند که می توانند شخص مطالعه کننده را به اشتباه بیاندازند. در مراجعه به متن طولانی و مفصلی که از طرف ATMEL برای سری XMEGA A نوشته شده و رجوع به رجیسترهای داخلی این خانواده، مشاهده می شود که برای ورودی مثبت، امکان اتصال به چندین پین ورودی مختلف و خروجی DAC تعریف شده است.

برای ورودی منفی هم امکان اتصال به چند پین ورودی، خروجی DAC، ولتاژ مرجع داخلی و مقدار مقیاس شده Vcc آورده شده است. اما در Application note مربوط به مقایسه کننده داخلی در همین مورد با جمله زیر مواجه می شویم:

Only the DAC output is available on the positive input pin

و این جمله صحیح نیست. از این دست اشکالات در متون ATMEL زیاد مشاهده می شود و می توان موارد زیادی را از آن ذکر کرد و این مورد اخیر متاسفانه اشتباه تایپی یا چاپی نیست و یک اشتباه مفهومی است.

امکان تعریف باند هیسترزیس مقایسه کننده

عرض باند هیسترزیس مقایسه کننده های داخلی، در سه وضعیت بدون هیسترزیس، هیسترزیس کم و هیسترزیس زیاد قابل تعریف است. عرض باند در حالت اول برابر صفر، در حالت کم حدود ۲۰ یا ۲۵ میلی ولت و در حالت زیاد حدود ۴۰ یا ۵۰ میلی ولت است.

امکان تعریف تاخیر مقایسه کننده

سرعت عملکرد مقایسه کننده هم در دو وضعیت قابل تعریف است که زمان تاخیر مقایسه کننده را تغییر می دهد. نکته قابل توجه این است که تاخیر مقایسه کننده در خانواده سری A1 و در سرعت بالا حدود ۷۰ نانو ثانیه است. این در حالی است که همین تاخیر برای ATMEGA64 حدود ۵۰۰ نانوثانیه است و این اعداد، تفاوت سرعت عملکرد XMEGA را در کاربردهایی مانند کنترل جریان یک موتور و مواردی از این دست به خوبی نشان می دهد.

Window mode

یک امکان ویژه برای پیاده سازی وقفه در محدوده های مختلف ورودی است. در این حالت باید دو مقایسه کننده بکار گرفته شوند و ورودی های مثبت آنها به یکدیگر و به ولتاژ مورد سنجش متصل شوند. دو ورودی منفی هم به ولتاژهای محدوده بالا و پائین Window مورد تعریف، وصل می شوند. با فعال سازی و تنظیم این وضعیت می توان در یکی از ۴ وضعیت بالاتر از محدوده بالایی پنجره(window)، بین دو محدوده ، خارج از دو محدوده و پائین تر از حد پائین، وقفه ایجاد کرد. همچنین بدون وقفه هم امکان خواندن این وضعیت از رجیسترهای داخلی وجود دارد.

خروجی مقایسه کننده آنالوگ

امکان فعال سازی پین خروجی مقایسه کننده شماره صفربرای دسترسی بیرونی به وضعیت مقایسه کننده آنالوگ توسط یک بیت رجیستر های داخلی، فراهم است که وضعیت مقایسه کننده را برای استفاده های خارجی در دسترس قرار می دهد.

علاوه بر همه این موارد، خروجی مقایسه کننده آنالوگ می تواند به عنوان یک Event در نظر گرفته شود که با وقوع آن عملیاتی در یک بخش داخلی دیگر و بدون دخالت CPU به انجام برسد.
USART و IRCOM

در خانواده XMEGA حداکثر ۸ عدد USART وجود دارد که در مقایسه با AVRهای معمولی که اکثرا از یک و حداکثر دو USART بهره می برند، تعداد بسیار بالاتری می باشد.از نظر دقت Baud Rate هم امکانی در XMEGA وجود دارد که Baud Rate های بسیار متنوع تری را می تواند در ارتباط تامین کند و طیف گسترده تری را نسبت به AVR های معمولی شامل می شود.

USART در خانواده XMEGA همچنین امکان ارتباط بصورت Master SPI را دارد و این امکان به غیر از سخت افزار مستقلی است که برای ارتباط SPI در این خانواده وجود دارد. یکی از امکانات جالب XMEGA که در ارتباط با USART قرار گرفته،(IRCOM(InfraRed Communication Module یا ماژول ارتباط مادون قرمز است که سخت افزار لازم برای ارتباط با پروتکل IrDA 1.4 تا نرخ ارتباط ۱۱۵۲۰۰ بیت در ثانیه را تامین می کند. این واحد سخت افزاری به همراه USART مورد نظر، پالس های لازم برای ارسال مادون قرمز را تولید می کند و پالس های دریافتی را هم به اطلاعات مناسب برای اعمال به ورودی USART، تبدیل می کند.

DMA هم می تواند با USART ارتباط برقرار کند و تبادل اطلاعات را به صورت مستقیم به عهده بگیردکه این امکان در راستای کم شدن بار CPU و بالا بردن سرعت کلی اجرای برنامه پیش بینی شده است.


نتیجه یک آزمایش عملی در مورد بخش CLOCK

هرچند عملکرد سخت افزارهای مختلف XMEGA تا فرکانس ۳۲ مگاهرتز گارانتی شده است. اما از طریق PLL داخلی می توان فرکانس کلاک را بالاتر برد و به اصطلاح CPU را over clock کرد. برای حداکثر مجاز خروجی این PLL در یکی از توضیحات datasheet عدد ۲۰۰ مگاهرتز(!) ذکر شده است. در یک آزمایش عملی با تنظیم PLL مشاهده شد که نرم افزار مورد نظر تا فرکانس ۶۴ مگاهرتز، یعنی ۲۰۰ درصد over clock جواب می داد و این نتیجه برای برخی دوستان که مشکل سرعت در مورد کاربردهایی نظیر نمایش تصویر و مانند آن را دارند،احتمالا می تواند نتیجه امیدوار کننده ای محسوب شود. البته در همین شرایط مشاهده شد که در بعضی از مقادیر prescaler، خروجی TIMER مورد نظر از کار می افتد و فقط در بعضی شرایط کار می کند. اما هدف از ذکر نتیجه این آزمایش عملی این است که نشان داده شود که فرکانس ۳۲ مگاهرتز لزوما حداکثر توان پردازشی XMEGA نیست.
RTC

واحد(RTC(Real Time Counter شامل یک شمارنده ۱۶ بیتی است که از یک کلاک مستقل فرمان می گیرد و مقدار حداکثر آن هم قابل تعیین است. از طریق یک Compare register به طول ۱۶ بیت هم امکان تعریف مقدار مشخصی وجود دارد که در صورت برابر شدن RTC با آن یک وقفه تولید شود. منابع کلاک برای RTC می تواند از اسیلاتور ۳۲٫۷۶۸ کیلو هرتز خارجی یا دو اسیلاتور ۳۲٫۷۶۸ کیلو هرتز یا ۳۲ کیلوهرتز داخلی تامین شود که اسیلاتور خارجی بصورت مستقیم یا تقسیم شده بر ۳۲ و اسیلاتورهای داخلی تنها بصورت تقسیم بر ۳۲ به عنوان منبع کلاک RTC قابل انتخاب است. در ورودی RTC هم یک prescaler قابل برنامه ریزی ۱۰ بیتی وجود دارد که می تواند تا ضریب تقسیم ۱۰۲۴ را برای تقسیم کلاک ورودی انتخاب کند.بنابراین در حداکثر ضریب تقسیم کلاک ورودی، RTC قابلیت تولید زمانی بیش از ۱۸ ساعت را دارد. امکان قرار گرفتن در EVENT SYSTEM هم برای RTC وجود دارد و از سرریز یا شرایط Compare آن می توان به عنوان یک Event استفاده کرد.


RTC32 و Battery backup system

ک RTC به طول ۳۲ بیت است که مقدار حداکثر آن قابل تعیین و دارای یک Compare register به طول ۳۲ بیت است. کلاک این واحد فقط از اسیلاتور ۳۲٫۷۶۸ کیلوهرتز خارجی تامین می شود و این امکان وجود دارد که یک ضریب تقسیم ۳۲۷۶۸ یا ۳۲ به این کلاک اعمال شود. بنابراین دو کلاک با مقادیر ۱ و ۱۰۲۴ هرتز برای RTC32 قابل انتخاب هستند. با یک محاسبه سرانگشتی می توان حساب کرد که RTC32 به ازای کلاک ۱ هرتز قادر است زمانی بیش از ۱۳۶ سال را ایجاد کند.

یک توانایی خاص موجود در برخی شماره های XMEGA، وجود پایه VBAT برای اتصال یک Battery backup به IC برای استفاده در مواقعی است که تغذیه اصلی IC قطع می شود. در این شرایط بصورت خودکار تغذیه RTC32 و اسیلاتور ۳۲۷۶۸ خارجی از طریق این باتری خارجی تامین می شود و عملیات زمان گیری تنظیم شده برای آن به شکل صحیحی به کار خود ادامه می دهد.

ATXMEGA256A3B یکی از این نمونه هاست که تا این تاریخ از طرف شرکت ATMEL معرفی شده است. در این شماره به جای PF5 که در ATXMEGA256A3 وجود دارد، ورودی VBAT پیش بینی شده و باتری مورد نظر به این پایه متصل و در زمان مقتضی از آن استفاده می شود و بعد از برگشت تغذیه اصلی مجددا توان از طریق ولتاژ تغذیه تامین خواهد شد. مراجعه به اطلاعات IC مزبور نشان می دهد که مصرف جریان کشیده شده از باتری در هنگام قطع تغذیه اصلی تنها در حد ۰٫۵ میکروآمپر است و این جریان بسیار پائین می تواند استفاده از باتری را جهت تغذیه IC و حفظ عملیات زمان گیری، برای مدتی طولانی تضمین کند.

javad naderi
17-04-2011, 01:07
برد آموزشی ATXMEGA128A1



You can see links before reply


د نقشه شماتیک ، نمونه مدار چاپی و دیتا شیت میکرو atxmega128a1

You can see links before reply

n340
18-04-2011, 13:17
چه استعداد نهفتی تو این انجمن بوده خبر نداشتیم
دوستان برای دسترسی به پورت ها
ایا راهی مسقیم وجودئ دارد غیر & | کردن پورت
حالا اگه بخوایم مقدار یک پین رو بخونیم چه کنیم

pooriya
18-04-2011, 15:36
چه استعداد نهفتی تو این انجمن بوده خبر نداشتیم
دوستان برای دسترسی به پورت ها
ایا راهی مسقیم وجودئ دارد غیر & | کردن پورت
به غیر از اینکه می تونید مثل سابق باینری یا هگز مقدار دهی کنید می تونید به روش های زیر هم عمل کنید.

البته بسته به نوع کامپایلر می تواند متفاوت باشد.

در مورد کامپایلر iar به صورت زیر است.(استاد کی نژاد)
رای خواناتر بودن و امکان استفاده مجدد از کدهای نوشته شده و پشتیبانی و نگهداری از نرم افزار ، بجای نوشتن مقادیر عددی برای رجیسترها بهتر است از نامگذاری هایی که در فایل Header مربوط به هر شماره وجود دارد، استفاده شود. 5 نوع نامگذاری مقادیر با پسوند های bp_ و bm_ و gp_ و gm_ و gc_ وجود دارد که با ذکر مثال هایی در این مورد توضیح داده می شود.
برای تعیین مقدار یک رجیستر روش اول مقداردهی بصورت عددی است. به عنوان مثال:

PORTA_OUT=0X02;
روش دوم که بصورت سنتی مورد استفاده قرار می گیرد، استفاده از نامهای معادل بر اساس محل بیت ( Bit position) است. این مقادیر برای یک رجیستر 8 بیتی در محدوده 0 تا 7 هستند که نشان دهنده ارزش بیت است و با bp_ ختم می شوند:

PORTA_OUT=(1<<PIN1_bp);
اما روش راحت تر استفاده از مقادیر تعریف شده بر اساس Bit mask است که در آن نیازی به اپراتور شیفت وجود ندارد و در تعریف آن لحاظ شده است. این مقادیر در نامگذاری با bm_ ختم می شوند:

PORTA_OUT=PIN1_bm;
برای یک کردن چند بیت متناظر در یک رجیستر می توان از عملیات OR استفاده کرد:

PORTA_OUT=PIN1_bm | PIN0_bm;
حال اگر تغییر چند بیت در یک رجیستر مورد نظر باشد، به نحوی که سایر بیت ها در وضعیت خود باقی بمانند، از اپراتور =| و =& استفاده می شود:

PORTA_OUT |= PIN1_bm;
PORTA_OUT &= ~(PIN1_bm);
دستور اول بیت شماره یک از رجیستر را با حفظ وضعیت بقیه بیت ها یک می کند و دستور دوم همین بیت را صفر می کند.
به غیر از تعریف بیت های مجزا در یک رجیستر، برای دسترسی به گروه هایی از بیت ها که وظایف مشخصی دارند، 3 نوع نام گذاری با پسوندهای gm_ و gc_ و gp_ وجود دارد. به عنوان مثالی از این نوع مقداردهی، برای انتخاب منبع کلاک یک تایمر لازم است به 4 بیت بصورت همزمان مقداردهی شود. دستور زیر با مقداردهی مستقیم سبب می شود که کلاک وسایل جانبی تقسیم بر 4 به عنوان منبع کلاک TCC0 انتخاب شود:

TCC0_CTRLA = 0X03;
در شکل دوم بجای این دستور می توان از شکل زیر بر اساس تک تک بیت های فعال هم استفاده کرد:

TCC0_CTRLA = TC0_CLKSEL1_bm | TC0_CLKSEL0_bm;
اما روش اصولی تر آن است که وضعیت مجموعه این 4 بیت را که با پسوند gc_ تعریف شده و منظور از آن Group configuration است، در یک مرحله در رجیستر مورد نظر قرار داده شود:

TCC0_CTRLA = TC_CLKSEL_DIV4_gc;
برای فهم بهتر دستورات مذکور می توانیم به تعریف هریک از این مقادیر در فایل Header مربوطه مراجعه کنیم:

#define TC0_CLKSEL0_bm (1<<0) // Clock Selection bit 0 mask
#define TC0_CLKSEL1_bm (1<<1) // Clock Selection bit 1 mask
و در مورد Group configuration مورد نظر:

typedef enum TC_CLKSEL_enum {
TC_CLKSEL_OFF_gc = (0x00<<0), // Timer Off
TC_CLKSEL_DIV1_gc = (0x01<<0), // System Clock
TC_CLKSEL_DIV2_gc = (0x02<<0), // System Clock / 2
TC_CLKSEL_DIV4_gc = (0x03<<0), // System Clock / 4
TC_CLKSEL_DIV8_gc = (0x04<<0), // System Clock / 8
TC_CLKSEL_DIV64_gc = (0x05<<0), // System Clock / 64
TC_CLKSEL_DIV256_gc = (0x06<<0), // System Clock / 256
TC_CLKSEL_DIV1024_gc = (0x07<<0), // System Clock / 1024
TC_CLKSEL_EVCH0_gc = (0x08<<0), // Event Channel 0
TC_CLKSEL_EVCH1_gc = (0x09<<0), // Event Channel 1
TC_CLKSEL_EVCH2_gc = (0x0A<<0), // Event Channel 2
TC_CLKSEL_EVCH3_gc = (0x0B<<0), // Event Channel 3
TC_CLKSEL_EVCH4_gc = (0x0C<<0), // Event Channel 4
TC_CLKSEL_EVCH5_gc = (0x0D<<0), // Event Channel 5
TC_CLKSEL_EVCH6_gc = (0x0E<<0), // Event Channel 6
TC_CLKSEL_EVCH7_gc = (0x0F<<0), // Event Channel 7
} TC_CLKSEL_t;

همانطور که مشاهده می شود، ترکیبات مورد نظر به عنوان یک نوع متغیر تعریف شده و خاصیت این نوع تعریف این است که در تعریف توابع می توان نوع متغیر ورودی را بجای unsigned char از نوع TC_CLKSEL_t تعریف کرد. در این شرایط اگر مقدار اشتباهی در ورودی تابع اعمال شود، منجر به ایجاد خطا در کامپایلر و تشخیص خطای برنامه نویسی می شود.
سوال بعدی که مطرح می شود این است که برای تغییر چند بیت از یک رجیستر با حفظ سایر بیت های آن باید به چه شیوه ای عمل شود؟ در این مرحله است که مقادیر تعریف شده با پسوند gm_ که معرف Group mask است، اهمیت خود را نشان می دهد. در این مقادیر تمام بیت های مربوط به یک گروه از بیت ها یک هستند و با استفاده از آن می توان تغییرات مورد نظر را انجام داد. مثلا در رجیستر PINxCTRL عملا 4 گروه مختلف از بیت ها وجود دارند و تغییر یک گروه می تواند با حفظ وضعیت بقیه بیت ها انجام شود.اگر لازم باشد با حفظ وضعیت سایر بیت ها مقاومت Pull down در PA0 فعال شود، می توان از دستور زیر استفاده کرد:

PORTA_PIN0CTRL=( PORTA_PIN0CTRL & ~ PORT_OPC_gm) | PORT_OPC_PULLDOWN_gc;
دستور اخیر در ابتدا 3 بیت OPC را با عملیات AND صفر می کند و بعد در محل آن مقدار مناسب را با OR قرار می دهد. با مراجعه به تعریف زیر مفهوم این دستور روشن تر می شود:

#define PORT_OPC_gm 0x38 // Output/Pull Configuration group mask
آخرین نوع مقادیر که با پسوند gp_ تعریف شده اند، اهمیت چندانی در برنامه نویسی ندارند و تنها مکان اولین بیت با ارزش کمتر را در گروه بیت ها در رجیستر مشخص می کنند:

#define PORT_OPC_gp 3 // Output/Pull Configuration group position
حالا اگه بخوایم مقدار یک پین رو بخونیم چه کنیم
بعد از اینکه پورت مورد نظر را توسط رجیستر DIR_ به صورت ورودی قرار دادید می توانید توسط رجیستر IN_ عمل مورد نظر خود را انجام دهید

if((PORTA_IN & (1<<0))==0)
{
..........
..........
}
مثلا دستور زیر وضعیت بیت 1 از پورت D را تغییر حالت می دهد(اگ 1 بوده 0 میکند و اگر 0 بوده 1 میکند)
PORTD_OUTTGL=PIN1_bm
یا دستور زیر که بیت 0و1 از پورت A را 1 میکند.
PORTA_OUT=PIN1_bm | PIN0_bm;

شرمنده سیستمم یه مقدار قاط زده بود:mrgreen::mrgreen: